Algorithmic Complexity

Nelson Padua-Perez Bill Pugh

Department of Computer Science University of Maryland, College Park

Algorithm Efficiency

Efficiency

- Amount of resources used by algorithm
 - Time, space
- Measuring efficiency
 - Benchmarking
 - Asymptotic analysis

Benchmarking

Approach

- Pick some desired inputs
- Actually run implementation of algorithm
- Measure time & space needed
- Industry benchmarks
 - SPEC CPU performance
 - MySQL Database applications
 - WinStone Windows PC applications
 - MediaBench Multimedia applications
 - Linpack Numerical scientific applications

Benchmarking

Advantages

Precise information for given configuration

Implementation, hardware, inputs

Disadvantages

- Affected by configuration
 - Data sets (usually too small)
 - Hardware
 - Software
- Affected by special cases (biased inputs)
- Does not measure intrinsic efficiency

Asymptotic Analysis

Approach

- Mathematically analyze efficiency
- Calculate time as function of input size n
 - T ≈ O[f(n)]
 - T is on the order of f(n)
 - "Big O" notation
- Advantages
 - Measures intrinsic efficiency
 - Dominates efficiency for large input sizes

Search Example

Number guessing game

- Pick a number between 1...n
- Guess a number
- Answer "correct", "too high", "too low"
- Repeat guesses until correct number guessed

Linear Search Algorithm

Algorithm

Guess number = 1 fincorrect, increment guess by 1 Repeat until correct

Example

- Given number between 1...100
- Pick 20
- Guess sequence = 1, 2, 3, 4 ... 20
- Required 20 guesses

Linear Search Algorithm

Analysis of # of guesses needed for 1...n

- If number = 1, requires 1 guess
- If number = n, requires n guesses
- On average, needs n/2 guesses

Time = O(n) = Linear time

Binary Search Algorithm

Algorithm

- Set ∆ to n/4
- Guess number = n/2
- **If too large, guess number** Δ
- **If too small, guess number +** Δ
- Reduce ∆ by ½
- Repeat until correct

Binary Search Algorithm

Example

- Given number between 1...100
- Pick 20
- Guesses =
 - **50**, Δ = 25, Answer = too large, subtract Δ
 - **25**, Δ = **12**, **Answer** = too large, subtract Δ
 - 13, Δ = 6, Answer = too small, add Δ
 - 19, Δ = 3, Answer = too small, add Δ
 - **22**, Δ = 1, Answer = too large, subtract Δ
 - **21**, Δ = 1, Answer = too large, subtract Δ

20

Required 7 guesses

Binary Search Algorithm

Analysis of # of guesses needed for 1...n

- If number = n/2, requires 1 guess
- If number = 1, requires log₂(n) guesses
- If number = n, requires log₂(n) guesses
- On average, needs log₂(n) guesses
- Time = O(log₂(n)) = Log time

Search Comparison

For number between 1...100

- Simple algorithm = 50 steps
- Binary search algorithm = log₂(n) = 7 steps

For number between 1...100,000 Simple algorithm = 50,000 steps Binary search algorithm = log₂(n) = 17 steps

Binary search is much more efficient!

Comparing two linear functions

Size	Running Time			
	n/2	4n+3		
64	32	259		
128	64	515		
256	128	1027		
512	256	2051		

Comparing two functions

- n/2 and 4n+3 behave similarly
- Run time roughly doubles as input size doubles
- Run time increases linearly with input size
- For large values of n
 - Time(2n) / Time(n) approaches exactly 2
- Both are O(n) programs

Comparing two log functions

Size	Running Time			
	log ₂ (n)	5 * log ₂ (n) + 3		
64	6	33		
128	7	38		
256	8	43		
512	9	48		

Comparing two functions

- log₂(n) and 5 * log₂(n) + 3 behave similarly
- Run time roughly increases by constant as input size doubles
- Run time increases logarithmically with input size
- For large values of n
 - Time(2n) Time(n) approaches constant
 - Base of logarithm does not matter
 - Simply a multiplicative factor

 $\log_a N = (\log_b N) / (\log_b a)$

Both are O(log(n)) programs

Comparing two quadratic functions

Size	Running Time				
	n ²	2 n ² + 8			
2	4	16			
4	16	40			
8	64	132			
16	256	520			

Comparing two functions

- n² and 2 n² + 8 behave similarly
- Run time roughly increases by 4 as input size doubles
- Run time increases quadratically with input size

For large values of n

Time(2n) / Time(n) approaches 4

Both are O(n²) programs

Big-O Notation

Represents

Upper bound on number of steps in algorithm
Intrinsic efficiency of algorithm for large inputs

Formal Definition of Big-O

Function f(n) is O(g(n)) if

For some positive constants M, N₀

 $\blacksquare M \times g(n) \ge f(n), \text{ for all } n \ge N_0$

Intuitively

■ For some coefficient M & all data sizes ≥ N₀
■ M × g(n) is always greater than f(n)

Big-O Examples

- 5n + 1000 ⇒ O(n)
 - Select M = 6, N₀ = 1000
 - For n ≥ 1000
 - 6n ≥ 5n+1000 is always true
 - **Example** \Rightarrow for n = 1000
 - **6000 ≥ 5000 +1000**

Big-O Examples

```
\blacksquare 2n^2 + 10n + 1000 \Rightarrow O(n^2)
```

- Select M = 4, N₀ = 100
- For n ≥ 100
 - $4n^2 \ge 2n^2 + 10n + 1000$ is always true
- **Example** \Rightarrow for n = 100
 - 40000 ≥ 20000 + 1000 + 1000

Observations

Big O categories

- O(log(n))
- O(n)
- O(n²)
- For large values of n
 - Any O(log(n)) algorithm is faster than O(n)
 - Any O(n) algorithm is faster than O(n²)

Asymptotic complexity is fundamental measure of efficiency

Comparison of Complexity

Complexity Category Example

Complexity Category Example

Calculating Asymptotic Complexity

As n increases

- Highest complexity term dominates
- Can ignore lower complexity terms

Examples

- 2 n + 100
- n log(n) + 10 n
- ∎ ½ n² + 100 n
- n³ + 100 n²

 $\Rightarrow O(nlog(n)) \\ \Rightarrow O(n^2)$

 $\Rightarrow O(n)$

- ⇒ O(n³)
- 1/100 2ⁿ + 100 n⁴
- $\Rightarrow O(n^{3}) \\\Rightarrow O(2^{n})$

■ 2n + 100 ⇒ O(n)

∎ n _<u>∧</u>_ nlog(n) _●_ 2 n + 100

¹/₂ n log(n) + 10 n ⇒ O(nlog(n))

| → n → nlog(n) → 1/2 n log(n) + 10 n

____ nlog(n) _<u>∧</u>__ n^2 ___ 1/2 n^2 + 100 n

■ $1/100 2^{n} + 100 n^{4} \Rightarrow O(2^{n})$

__◆__ n^2 _____ n^4 ____ 2^n ____ 1 / 100 2^n + 100 n^4

- Can analyze different types (cases) of algorithm behavior
- Types of analysis
 - Best case
 - Worst case
 - Average case

Best case

- Smallest number of steps required
- Not very useful
- Example ⇒ Find item in first place checked

Worst case

- Largest number of steps required
- Useful for upper bound on worst performance
 - Real-time applications (e.g., multimedia)
 - Quality of service guarantee
- Example => Find item in last place checked

Quicksort Example

Quicksort

- One of the fastest comparison sorts
- Frequently used in practice
- Quicksort algorithm
 - Pick pivot value from list
 - Partition list into values smaller & bigger than pivot
 - Recursively sort both lists

Quicksort Example

- Quicksort properties
 - Average case = O(nlog(n))
 - Worst case = O(n²)
 - Pivot ≈ smallest / largest value in list
 - Picking from front of nearly sorted list
- Can avoid worst-case behavior
 - Select random pivot value

Average case

- Number of steps required for "typical" case
- Most useful metric in practice
- Different approaches
 - Average case
 - Expected case
 - Amortized

Approaches to Average Case

Average case

- Average over all possible inputs
- Assumes some probability distribution, usually uniform

Expected case

- Algorithm uses randomness
- Worse case over all possible input
- average over all possible random values

Amortized

- for all long sequences of operations
- worst case total time divided by # of operations

Amortization Example

Adding numbers to end of array of size k

- If array is full, allocate new array
 - Allocation cost is O(size of new array)
- Copy over contents of existing array
- Two approaches
 - Non-amortized
 - If array is full, allocate new array of size k+1
 - Amortized
 - If array is full, allocate new array of size 2k
 - Compare their allocation cost

Amortization Example

Non-amortized approach

Allocation cost as table grows from 1...n

Size (k)	1	2	3	4	5	6	7	8
Cost	1	2	3	4	5	6	7	8

Total cost

 \Rightarrow n(n+1)/2

- Case analysis
 - Best case
 - Worse case
 - Amortized case

- \Rightarrow allocation cost = k
- \Rightarrow allocation cost = k
- \Rightarrow allocation cost = (n+1)/2

Amortization Example

Amortized approach

Allocation cost as table grows from 1...n

Size (k)	1	2	3	4	5	6	7	8
Cost	2	0	4	0	8	0	0	0
Total cost $\Rightarrow 2(n-1)$								

Case analysis

- Best case
- Worse case
- Amortized case

 \Rightarrow allocation cost = 0

- \Rightarrow allocation cost = 2(k 1)
- \Rightarrow allocation cost = 2
- An individual step might take longer, but faster for any sequence of operations