Algorithmic Complexity

Nelson Padua-Perez Bill Pugh

Department of Computer Science
University of Maryland, College Park

Algorithm Efficiency

- Efficiency
- Amount of resources used by algorithm
- Time, space
- Measuring efficiency
- Benchmarking
- Asymptotic analysis

Benchmarking

- Approach
- Pick some desired inputs
- Actually run implementation of algorithm
- Measure time \& space needed
- Industry benchmarks
- SPEC - CPU performance
- MySQL - Database applications
- WinStone - Windows PC applications
- MediaBench - Multimedia applications
- Linpack - Numerical scientific applications

Benchmarking

- Advantages
- Precise information for given configuration

■ Implementation, hardware, inputs

- Disadvantages
- Affected by configuration

■ Data sets (usually too small)
■ Hardware

- Software
- Affected by special cases (biased inputs)
- Does not measure intrinsic efficiency

Asymptotic Analysis

- Approach
- Mathematically analyze efficiency
- Calculate time as function of input size n
- $\mathrm{T} \approx \mathrm{O}[\mathrm{f}(\mathrm{n})]$
$\square T$ is on the order of $f(n)$
- "Big O" notation
- Advantages
- Measures intrinsic efficiency
- Dominates efficiency for large input sizes

Search Example

- Number guessing game
- Pick a number between 1...n
- Guess a number

■ Answer "correct", "too high", "too low"

- Repeat guesses until correct number guessed

Linear Search Algorithm

- Algorithm
(G)Guess number = 1

圈
Repeat until correct

Example

- Given number between 1... 100
- Pick 20
- Guess sequence $=1,2,3,4 \ldots 20$
- Required 20 guesses

Linear Search Algorithm

- Analysis of \# of guesses needed for 1...n
- If number = 1, requires 1 guess
- If number = n , requires n guesses
- On average, needs $\mathbf{n} / 2$ guesses
- Time $=\mathbf{O}(\mathrm{n})=$ Linear time

Binary Search Algorithm

Algorithm

- Set Δ to $\mathrm{n} / 4$
- Guess number = n/2
- If too large, guess number - Δ
- If too small, guess number $+\Delta$
- Reduce Δ by $1 / 2$
- Repeat until correct

Binary Search Algorithm

Example

■ Given number between 1... 100

- Pick 20
- Guesses =
$\square 50, \Delta=25$, Answer $=$ too large, subtract Δ
$\square 25, \Delta=12$, Answer $=$ too large, subtract Δ
■ 13, $\Delta=6, \quad$ Answer $=$ too small, add Δ
$\square 19, \Delta=3, \quad$ Answer $=$ too small, add Δ
$\square 22, \Delta=1, \quad$ Answer $=$ too large, subtract Δ
$\square 21, \Delta=1, \quad$ Answer $=$ too large, subtract Δ
- 20
- Required 7 guesses

Binary Search Algorithm

- Analysis of \# of guesses needed for 1...n
- If number $=n / 2$, requires 1 guess
- If number $=1$, requires $\log _{2}(n)$ guesses
- If number $=n$, requires $\log _{2}(\mathrm{n})$ guesses
- On average, needs $\log _{2}(\mathrm{n})$ guesses
- Time $=\mathbf{O}\left(\log _{2}(n)\right)=$ Log time

Search Comparison

- For number between 1... 100
- Simple algorithm = 50 steps
- Binary search algorithm $=\log _{2}(\mathrm{n})=7$ steps
- For number between 1...100,000

■ Simple algorithm $=\mathbf{5 0 , 0 0 0}$ steps

- Binary search algorithm $=\log _{2}(n)=17$ steps
- Binary search is much more efficient!

Asymptotic Complexity

- Comparing two linear functions

Size	Running Time	
	$\mathrm{n} / 2$	$4 \mathrm{n}+3$
64	32	259
128	64	515
256	128	1027
512	256	2051

Asymptotic Complexity

- Comparing two functions

E $n / 2$ and $4 n+3$ behave similarly

- Run time roughly doubles as input size doubles

■ Run time increases linearly with input size

- For large values of \mathbf{n}
- Time(2n) / Time(n) approaches exactly 2
- Both are O(n) programs

Asymptotic Complexity

- Comparing two log functions

Size	Running Time	
	$\log _{2}(\mathrm{n})$	$5{ }^{*} \log _{2}(\mathrm{n})+3$
64	6	33
128	7	38
256	8	43
512	9	48

Asymptotic Complexity

- Comparing two functions
- $\log _{2}(\mathrm{n})$ and $5{ }^{*} \log _{2}(\mathrm{n})+3$ behave similarly
- Run time roughly increases by constant as input size doubles
- Run time increases logarithmically with input size
- For large values of \mathbf{n}
- Time(2n) - Time(n) approaches constant
- Base of logarithm does not matter

■ Simply a multiplicative factor

$$
\log _{a} N=\left(\log _{b} N\right) /\left(\log _{b} a\right)
$$

- Both are O($\log (n)$) programs

Asymptotic Complexity

- Comparing two quadratic functions

Size	Running Time	
	n^{2}	$2 \mathrm{n}^{2}+8$
2	4	16
4	16	40
8	64	132
16	256	520

Asymptotic Complexity

- Comparing two functions
- n^{2} and $2 n^{2}+8$ behave similarly
- Run time roughly increases by 4 as input size doubles
- Run time increases quadratically with input size
- For large values of \mathbf{n}
- Time(2n) / Time(n) approaches 4
- Both are $\mathbf{O}\left(\mathrm{n}^{2}\right)$ programs

Big-O Notation

- Represents
- Upper bound on number of steps in algorithm
- Intrinsic efficiency of algorithm for large inputs

Formal Definition of Big-O

- Function $f(n)$ is $O(g(n))$ if
- For some positive constants M, N_{0}
- $M \times g(n) \geq f(n)$, for all $n \geq N_{0}$
- Intuitively
- For some coefficient M \& all data sizes $\geq \mathbf{N}_{\mathbf{0}}$
$\square M \times g(n)$ is always greater than $f(n)$

Big-O Examples

- $5 n+1000 \Rightarrow O(n)$
- Select $M=6, N_{0}=1000$
- For $\mathrm{n} \geq 1000$
$■ 6 n \geq 5 n+1000$ is always true
- Example \Rightarrow for $\mathrm{n}=1000$
$■ 6000 \geq 5000+1000$

Big-O Examples

- $2 n^{2}+10 n+1000 \Rightarrow O\left(n^{2}\right)$
- Select $M=4, N_{0}=100$
- For $\mathrm{n} \geq 100$
$\square 4 n^{2} \geq 2 n^{2}+10 n+1000$ is always true
■ Example \Rightarrow for $\mathrm{n}=100$
$\square 40000 \geq 20000+1000+1000$

Observations

- Big O categories
- O(log(n))
- O(n)
- O(n^{2})
- For large values of \mathbf{n}
- Any $O(\log (n))$ algorithm is faster than $O(n)$
- Any $\mathrm{O}(\mathrm{n})$ algorithm is faster than $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Asymptotic complexity is fundamental measure of efficiency

Comparison of Complexity

Complexity Category Example

Complexity Category Example

Calculating Asymptotic Complexity

- As n increases
- Highest complexity term dominates
- Can ignore lower complexity terms
- Examples
- 2 n + 100

$$
\Rightarrow \mathrm{O}(\mathrm{n})
$$

$$
n \log (n)+10 n \quad \Rightarrow O(n \log (n))
$$

$$
-1 / 2 n^{2}+100 n \quad \Rightarrow O\left(n^{2}\right)
$$

$$
n^{3}+100 n^{2} \quad \Rightarrow O\left(n^{3}\right)
$$

$$
1 / 1002^{n}+100 n^{4} \quad \Rightarrow O\left(2^{n}\right)
$$

Complexity Examples

- $2 n+100 \Rightarrow O(n)$

$$
-n-n \log (n) \bullet 2 n+100
$$

Complexity Examples

- $1 / 2 \mathrm{n} \log (\mathrm{n})+10 \mathrm{n} \Rightarrow \mathbf{O}(\mathrm{nlog}(\mathrm{n}))$

$$
\longrightarrow n-1 \log (n)-\times 1 / 2 n \log (n)+10 n
$$

Complexity Examples

- $1 / 2 n^{2}+100 n \Rightarrow \mathbf{O}\left(n^{2}\right)$

$$
-n \log (n)-\triangle n^{\wedge} 2-1 / 2 n^{\wedge} 2+100 n
$$

Complexity Examples

- $1 / 100 \mathbf{2}^{\mathrm{n}}+100 \mathrm{n}^{4} \Rightarrow \mathrm{O}\left(\mathbf{2}^{\mathrm{n}}\right)$
$\rightarrow n^{\wedge} 2-n^{\wedge} 4-2^{\wedge} n-1 / 100 \mathbf{2}^{\wedge} n+100 n^{\wedge} 4$

Types of Case Analysis

- Can analyze different types (cases) of algorithm behavior
- Types of analysis
- Best case
- Worst case
- Average case

Types of Case Analysis

- Best case
- Smallest number of steps required
- Not very useful
- Example \Rightarrow Find item in first place checked

Types of Case Analysis

- Worst case
- Largest number of steps required
- Useful for upper bound on worst performance

■ Real-time applications (e.g., multimedia)
■ Quality of service guarantee

- Example \Rightarrow Find item in last place checked

Quicksort Example

■ Quicksort
E One of the fastest comparison sorts

- Frequently used in practice
- Quicksort algorithm
- Pick pivot value from list
- Partition list into values smaller \& bigger than pivot
- Recursively sort both lists

Quicksort Example

- Quicksort properties
- Average case $=0(n \log (n))$
- Worst case $=0\left(n^{2}\right)$
$■$ Pivot \approx smallest / largest value in list
■ Picking from front of nearly sorted list
- Can avoid worst-case behavior
- Select random pivot value

Types of Case Analysis

- Average case
- Number of steps required for "typical" case
- Most useful metric in practice
- Different approaches
- Average case

■ Expected case
■ Amortized

Approaches to Average Case

- Average case
- Average over all possible inputs
- Assumes some probability distribution, usually uniform
- Expected case
- Algorithm uses randomness
- Worse case over all possible input
- average over all possible random values
- Amortized
- for all long sequences of operations
- worst case total time divided by \# of operations

Amortization Example

- Adding numbers to end of array of size k
- If array is full, allocate new array
$■$ Allocation cost is O (size of new array)
- Copy over contents of existing array
- Two approaches
- Non-amortized
- If array is full, allocate new array of size k+1
- Amortized

■ If array is full, allocate new array of size 2k

- Compare their allocation cost

Amortization Example

- Non-amortized approach
- Allocation cost as table grows from 1..n

Size (k)	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Cost	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$

- Total cost
$\Rightarrow \mathrm{n}(\mathrm{n}+1) / 2$
- Case analysis
- Best case
\Rightarrow allocation cost $=k$
- Worse case
\Rightarrow allocation cost $=k$
- Amortized case
\Rightarrow allocation cost $=(n+1) / 2$

Amortization Example

- Amortized approach
- Allocation cost as table grows from 1..n

Size (k)	1	2	3	4	5	6	7	8
Cost	2	0	4	0	8	0	0	0

- Case analysis
- Best case
- Worse case
- Amortized case $\quad \Rightarrow$ allocation cost $=2$
- An individual step might take longer, but faster for any sequence of operations

