Ray Tracing Basics

CSE 68I Autumn II Han-Wei Shen

Forward Ray Tracing

- We shoot a large number of photons

Problem?

Backward Tracing

For every pixel
Construct a ray from the eye
For every object in the scene
Find intersection with the ray
Keep if closest

The Viewing Model

- Based on a simple Pinhole Camera model
\square Simplest lens model
- Inverted image
- Similar triangles
- Perfect image if hole infinitely small
- Pure geometric optics
- No blurry

simplified pin-hole camera

Simplified Pinhole Camera

- Eye $=$ pinhole, Image plane $=$ box face (re-arrange)
- Eye-image pyramid (frustum)
- Note that the distance/size of image are arbitrary

Basic Ray Tracing Algorithm

for every pixel \{ cast a ray from the eye for every object in the scene
 find intersections with the ray keep it if closest
$\}$
compute color at the intersection point

Construct a Ray

3D parametric line

$$
p(t)=\text { eye }+t(s \text {-eye })
$$

$r(t)$: ray equation eye: eye (camera) position s: pixel position
t: ray parameter

Question: How to calculate the pixel position P?

Constructing a Ray

- 3D parametric line

$$
\mathbf{p}(\mathrm{t})=\mathbf{e}+\mathrm{t}(\mathbf{s}-\mathbf{e})
$$

*(boldface means vector)

- So we need to know \mathbf{e} and \mathbf{s}
- What are given (specified by the user or scene file)?
\checkmark camera position
\checkmark camera direction or center of interest
\checkmark camera orientation or view up vector
\checkmark distance to image plane
\checkmark field of view + aspect ratio
\checkmark pixel resolution

Given Camera Information

- Camera
- Eye
- Look at
- Orientation (up vector)
- Image plane
- Distance to plane, N
- Field of view in Y
- Aspect ration (X/Y)
- Screen
- Pixel resolution

Construct Eye Coordinate System

- We can calculate the pixel positions much more easily if we construct an eye coordinate system (eye space) first
- Known: eye position, center of interest, view-up vector
- To find out: new origin and three basis vectors

Assumption: the direction of view is orthogonal to the view plane (the plane that objects will be projected onto)

Eye Coordinate System

- Origin: eye position
- Three basis vectors: one is the normal vector (n) of the viewing plane, the other two are the ones (\mathbf{u} and v) that span the viewing plane

(u, v, n should be orthogonal to each other)

Eye Coordinate System

- Origin: eye position
- Three basis vectors: one is the normal vector (\mathbf{n}) of the viewing plane, the other two are the ones (\mathbf{u} and v) that span the viewing plane

\mathbf{n} is pointing away from the world because we use right hand coordinate system
$\mathbf{N}=$ eye - COI
$\mathbf{n}=\mathrm{N} /|\mathrm{N}|$

Remember $\mathbf{u}, \mathbf{v}, \mathbf{n}$ should be all unit vectors
(u, v, n should be orthogonal to each other)

Eye Coordinate System

- What about u and v ?

We can get u first -
u is a vector that is perpendicular to the plane spanned by N and view up vector (V_up)

Eye Coordinate System

- What about u and v ?

We can get u first -
u is a vector that is perpendicular to the plane spanned by N and view up vector (V_up)

$$
\begin{aligned}
U & =V_{-} u p \times \mathbf{n} \\
\mathbf{u} & =U /|U|
\end{aligned}
$$

Eye Coordinate System

- What about v?

Knowing n and u , getting v is easy

Eye Coordinate System

- What about v?

Knowing n and u , getting v is easy

$$
\mathbf{v}=\mathbf{n} \times \mathbf{u}
$$

v is already normalized

Eye Coordinate System

- Put it all together

Next Step?

- Determine the size of the image plane
- This can be derived from
\checkmark distance from the camera to the center of the image plane
\checkmark Vertical field of view angle
\checkmark Aspect ratio of the image plane
^ Aspect ratio being Width/Height

Image Plane Setup

- $\operatorname{Tan}\left(\theta_{\mathrm{v}} / 2\right)=\mathrm{H} / 2 \mathrm{~d}$
- $W=H^{*}$ aspect_ratio
- C's position $=\mathbf{e}-\mathbf{n} * \mathrm{~d}$
- L's position $=\mathbf{C}-\mathbf{u} * \mathrm{~W} / 2-\mathbf{v} * \mathrm{H} / 2$

- Assuming the image resolution is X (horizontal) by Y (vertical), then each pixel has a width of W / X and a height of H / Y
- Then for a pixel \mathbf{s} at the image pixel (i, j), it's location is at

$$
\mathbf{L}+\mathbf{u} * \mathrm{i} * \mathrm{~W} / \mathrm{X}+\mathbf{v} * \mathrm{j} * \mathrm{H} / \mathrm{Y}
$$

Put it all together

- We can represent the ray as a 3D parametric line $\mathbf{p}(\mathrm{t})=\mathbf{e}+\mathrm{t}(\mathbf{s}-\mathbf{e})$ (now you know how to get s and e)
- Typically we offset the ray by half

of the pixel width and height, i.e, cast the ray from the pixel center

(i,j)

Put it all together

- We can represent the ray as a 3D parametric line $\mathbf{p}(\mathrm{t})=\mathbf{e}+\mathrm{t}(\mathbf{s}-\mathbf{e})$ (now you know how to get s and e)
- Typically we offset the ray by half

of the pixel width and height, i.e, cast the ray from the pixel center

(i,j)

Ray-Sphere Intersection

- Problem: Intersect a line with a sphere
\checkmark A sphere with center $\mathbf{c}=\left(X_{c}, \mathbf{Y}_{c}, Z_{c}\right)$ and radius R can be represented as:
$\left(x-x_{c}\right)^{2}+(y-y c)^{2}+(z-z c)^{2}-R^{2}=0$
\checkmark For a point \mathbf{p} on the sphere, we can write the above in vector form:
($\mathbf{p - c}$).($\mathbf{p - c}$) $-\mathrm{R}^{2}=0$ (note ${ }^{\prime}$ ' is a dot product)
\checkmark We can plug the point on the ray $\mathbf{p}(\mathrm{t})=\mathbf{e}+\mathrm{t} \mathbf{d}$
(e+td-c).(e+td-c) $R^{2}=0$ and yield
(d.d) $t^{2}+2 d .(e-c) t+(e-c) .(e-c)-R^{2}=0$

Ray-Sphere Intersection

- When solving a quadratic equation
$a t^{2}+b t+c=0$
We have
- Discriminant $\quad d=\sqrt{b^{2}-4 a c}$
- and Solution $\quad t_{ \pm}=\frac{-b \pm d}{2 a}$

Ray-Sphere Intersection

$b^{2}-4 a c<0 \Rightarrow$ No intersection

$$
d=\sqrt{b^{2}-4 a c}
$$

$b^{2}-4 a c>0 \Rightarrow$ Two solutions (enter and exit)
$b^{2}-4 a c=0 \Rightarrow$ One solution (ray grazes sphere)

- Should we use the larger or smaller t value?

Ray-Sphere Intersection

$b^{2}-4 a c<0 \Rightarrow$ No intersection

$$
d=\sqrt{b^{2}-4 a c}
$$

$b^{2}-4 a c>0 \Rightarrow$ Two solutions (enter and exit)
$b^{2}-4 a c=0 \Rightarrow$ One solution (ray grazes sphere)

- Should we use the larger or smaller t value?

Calculate Normal

- Needed for computing lighting

$$
\mathrm{Q}=\mathrm{P}(t)-\mathrm{C} \ldots \text { and remember } \mathrm{Q} /\|\mathrm{Q}\|
$$

Calculate Normal

- Needed for computing lighting

$$
\mathrm{Q}=\mathrm{P}(t)-\mathrm{C} \ldots \text { and remember } \mathrm{Q} /\|\mathrm{Q}\|
$$

Choose the closet sphere

- Minimum search problem

```
For each pixel {
    form ray from eye through the pixel center
    t min}=
    For each object {
        if (t = intersect(ray, object)) {
        if (t< tmin )
            closestObject = object
                tmin}=
            }
        }
    }
}
```


Final Pixel Color

$$
\begin{aligned}
& \text { if }\left(\mathrm{t}_{\min }==\infty\right) \\
& \text { pixelColor }=\text { background color } \\
& \text { else } \\
& \quad \text { pixelColor }=\text { color of object at d along ray }
\end{aligned}
$$

CSE 681

Ray-Object Intersections: Axis-aligned Box

Ray-Box Intersection Test

Ray-Box Intersection Test

Ray-Box Intersection Test

- Intersect ray with each plane
- Box is the union of 6 planes

$$
\begin{aligned}
& x=x_{1}, x=x_{2} \\
& y=y_{1}, y=y_{2} \\
& z=z_{1}, z=z_{2}
\end{aligned}
$$

Ray-Box Intersection Test

- Intersect ray with each plane
- Box is the union of 6 planes

$$
\begin{aligned}
& x=x_{1}, x=x_{2} \\
& y=y_{1}, y=y_{2} \\
& z=z_{1}, z=z_{2}
\end{aligned}
$$

- Ray/axis-aligned plane is easy:

Ray-Box Intersection Test

- Intersect ray with each plane
- Box is the union of 6 planes

$$
\begin{aligned}
& x=x_{1}, x=x_{2} \\
& y=y_{1}, y=y_{2} \\
& z=z_{1}, z=z_{2}
\end{aligned}
$$

- Ray/axis-aligned plane is easy:

Ray-Box Intersection Test

- Intersect ray with each plane
- Box is the union of 6 planes

$$
\begin{aligned}
& x=x_{1}, x=x_{2} \\
& y=y_{1}, y=y_{2} \\
& z=z_{1}, z=z_{2}
\end{aligned}
$$

- Ray/axis-aligned plane is easy:

E.g., solve x component: $e_{x}+t D_{x}=x_{1}$

Ray-Box Intersection Test

Ray-Box Intersection Test

Ray-Box Intersection Test

1. Intersect the ray with each plane
2. Sort the intersections

Ray-Box Intersection Test

1. Intersect the ray with each plane
2. Sort the intersections
3. Choose intersection

Ray-Box Intersection Test

1. Intersect the ray with each plane
2. Sort the intersections
3. Choose intersection with the smallest $t>0$

Ray-Box Intersection Test

1. Intersect the ray with each plane
2. Sort the intersections
3. Choose intersection with the smallest $t>0$ that is within the range

Ray-Box Intersection Test

1. Intersect the ray with each plane
2. Sort the intersections
3. Choose intersection with the smallest $t>0$ that is within the range of the box

Ray-Box Intersection Test

1. Intersect the ray with each plane
2. Sort the intersections
3. Choose intersection with the smallest $t>0$ that is within the range of the box

Ray-Box Intersection Test

1. Intersect the ray with each plane
2. Sort the intersections
3. Choose intersection with the smallest $t>0$ that is within the range of the box

- We can do more

Ray-Box Intersection Test

1. Intersect the ray with each plane
2. Sort the intersections
3. Choose intersection with the smallest $t>0$ that is within the range of the box

- We can do more efficiently

Only Consider 2D for Now

- if a point (x, y) is in the box, then (x, y) in $\left[x_{1}, x_{2}\right] \times\left[y_{1}, y_{2}\right]$

The Principle

- Assuming the ray hits the box boundary lines at intervals [txmin,txmax], [tymin,tymax], the ray hits the box if and only if the intersection of the two intervals is not empty

Pseudo Code

$t_{\mathrm{xmin}}=\left(x_{1}-e_{\mathrm{x}}\right) / D x$
//assume $D x>0$
$t_{\mathrm{xmax}}=\left(x_{2}-e_{\mathrm{x}}\right) / D x$
$t_{y \min }=\left(y_{1}-e_{y}\right) / D y$
$t_{\text {ymax }}=\left(y_{2}-e_{y}\right) / D y / /$ assume $D y>0$
if $\left(t_{\mathrm{xmin}}>t_{\mathrm{ymax}}\right)$ or ($t_{\mathrm{ymin}}>t_{\mathrm{xmax}}$)
return false
else
return true

Pseudo Code

$$
\begin{aligned}
& t_{\mathrm{x} \min }=\left(x_{2}-e_{\mathrm{x}}\right) / D x \quad / / \text { if } \quad D x<0 \\
& t_{\mathrm{xmax}}=\left(x_{1}-e_{\mathrm{x}}\right) / D x \\
& t_{\mathrm{ymin}}=\left(y_{2}-e_{\mathrm{y}}\right) / D y \quad / / \text { if } \quad D \mathrm{y}<0 \\
& t_{\mathrm{ymax}}=\left(y_{1}-e_{\mathrm{y}}\right) / D y \\
& \text { if }\left(t_{\mathrm{x} \min }>t_{\mathrm{ymax}}\right) \text { or }\left(t_{\mathrm{ymin}}>t_{\mathrm{xmax}}\right) \\
& \text { return false } \\
& \text { else }
\end{aligned}
$$

return true

Now Consider All Axis

- We will calculate t_{1} and t_{2} for each axis (x , y , and z)
- Update the intersection interval as we compute t1 and t2 for each axis
- remember:

$$
\begin{aligned}
& t_{1}=\left(x_{1}-p_{x}\right) / D_{x} \\
& t_{2}=\left(x_{2}-p_{x}\right) / D_{x}
\end{aligned}
$$

Update $\left[t_{\text {near }}, t_{\text {far }}\right]$

- Set $t_{\text {near }}=-\infty$ and $t_{\text {far }}=+\infty$
- For each axis, compute t1 and t2
- make sure $\mathrm{t} 1<\mathrm{t} 2$
- if $t_{1}>t_{\text {near }}, t_{\text {near }}=t_{1}$
- if $t_{2}<t_{\text {far }}, t_{\text {far }}=t_{2}$
- If $t_{\text {near }}>t_{\text {far }}$, box is missed

Algorithm

Set $t_{\text {near }}=-\infty, t_{\text {far }}=\infty$
$R(\mathrm{t})=p+t^{*} \mathbf{D}$
For each pair of planes P associated with X, Y, and Z do: (example uses X planes)
If direction $\mathbf{D}_{x}=0$ then

$$
\text { if }\left(p_{x}<x_{1} \text { or } p_{x}>x_{2}\right)
$$

return FALSE
else

$$
\begin{aligned}
& \text { begin } \\
& t_{1}=\left(x_{1}-p_{x}\right) / \mathbf{D}_{x} \\
& t_{2}=\left(x_{h}-p_{x}\right) / \mathbf{D}_{x} \\
& \text { if } t_{1}>t_{2} \text { then swap }\left(t_{1}, t_{2}\right) \\
& \text { if } t_{1}>t_{\text {near }} \text { then } t_{\text {near }}=t_{1} \\
& \text { if } t_{2}<t_{\text {far }} \text { then } t_{\text {far }}=t_{2} \\
& \text { if } t_{\text {near }}>t_{\text {far }} \text { return FALSE } \\
& \text { if } t_{\text {far }}<0 \text { return FALSE } \\
& \text { end }
\end{aligned}
$$

Return $\mathrm{t}_{\text {near }}$

Special Case

- Ray is parallel to an axis
- If $D_{x}=0$ or $D_{y}=0$ or $D_{z}=0$
- $\mathrm{p}_{x}<\mathrm{x}_{1}$ or $\mathrm{p}_{x}>x_{2}$ then miss

p

Special Case

- Box is behind the eye
- If $t_{\text {far }}<0$, box is behind

