
Ray Tracing Basics
CSE 681 Autumn 11

Han-Wei Shen

Forward Ray Tracing
• We shoot a large number of photons

Problem?

Backward Tracing
For every pixel

Construct a ray from the eye
For every object in the scene

Find intersection with the ray

Keep if closest

The Viewing Model
• Based on a simple Pinhole Camera model

 Simplest lens model
 Inverted image
 Similar triangles

 Perfect image if hole
infinitely small

 Pure geometric optics
 No blurry

pin-hole camera simplified pin-hole camera

Simplified Pinhole Camera
 Eye = pinhole, Image plane = box face (re-arrange)
 Eye-image pyramid (frustum)
 Note that the distance/size of image are arbitrary

Basic Ray Tracing Algorithm

for every pixel {
 cast a ray from the eye
 for every object in the scene
 find intersections with the ray
 keep it if closest
 }
 compute color at the intersection point
 }

Construct a Ray
3D parametric line

 p(t) = eye + t (s-eye)
 r(t): ray equation
 eye: eye (camera) position
 s: pixel position
 t: ray parameter

eye

p
r(t)

t=0

Question: How to calculate the pixel position P?

Constructing a Ray
• 3D parametric line

p(t) = e + t (s-e)

*(boldface means vector)

• So we need to know e and s

• What are given (specified by the user or scene
file)?
✓ camera position
✓ camera direction or center of interest
✓ camera orientation or

view up vector
✓ distance to image plane
✓ field of view + aspect ratio
✓ pixel resolution

e
s s-e

Given Camera Information

u

v
n

e

N
xres

yres

• Camera
• Eye
• Look at
• Orientation (up vector)

• Image plane
• Distance to plane, N
• Field of view in Y
• Aspect ration (X/Y)

• Screen
• Pixel resolution

Construct Eye Coordinate System

• We can calculate the pixel positions much
more easily if we construct an eye
coordinate system (eye space) first

 Known: eye position, center of interest, view-up
vector

 To find out: new origin and three basis vectors

Assumption: the direction of view is
orthogonal to the view plane (the plane
that objects will be projected onto)

eye

center of interest (COI)

Eye Coordinate System
 Origin: eye position
 Three basis vectors: one is the normal vector (n) of

the viewing plane, the other two are the ones (u and
v) that span the viewing plane

eye

Center of interest (COI)

n

u
v

(u,v,n should be orthogonal to each other)

Eye Coordinate System
 Origin: eye position
 Three basis vectors: one is the normal vector (n) of

the viewing plane, the other two are the ones (u and
v) that span the viewing plane

eye

Center of interest (COI)

n

u
v

Remember u,v,n should
be all unit vectors

n is pointing away from the
world because we use right
hand coordinate system

N = eye – COI
n = N / | N |

(u,v,n should be orthogonal to each other)

Eye Coordinate System

 What about u and v?

eye
COI

n

u
v

V_up
We can get u first -

u is a vector that is perpendicular
to the plane spanned by
N and view up vector (V_up)

Eye Coordinate System

 What about u and v?

eye
COI

n

u
v

V_up
We can get u first -

u is a vector that is perpendicular
to the plane spanned by
N and view up vector (V_up)

 U = V_up x n

 u = U / | U |

Eye Coordinate System
 What about v?

Knowing n and u, getting v is
easy

eye
COI

n

u
v

V_up

Eye Coordinate System
 What about v?

Knowing n and u, getting v is
easy

eye
COI

n

u
v

V_up

 v = n x u

 v is already normalized

Eye Coordinate System
 Put it all together

Eye space origin: (Eye.x , Eye.y, Eye.z)

Basis vectors:

n = (eye – COI) / | eye – COI|
u = (V_up x n) / | V_up x n |
v = n x u

eye
COI

n

u
v

V_up

Next Step?
• Determine the size of the image plane

• This can be derived from

✓ distance from the camera to the center of
the image plane

✓ Vertical field of view angle

✓ Aspect ratio of the image plane
★ Aspect ratio being Width/Height

Image Plane Setup
• Tan(θv /2) = H / 2d

• W = H * aspect_ratio

• C’s position = e - n * d

• L’s position = C - u * W/2 - v * H/2

• Assuming the image resolution is X (horizontal) by Y
(vertical), then each pixel has a width of W/X and a height
of H/Y

• Then for a pixel s at the image pixel (i,j) , it’s location is at

L + u * i * W/X + v * j * H/Y

θv

d

H

W

C

L

e

Put it all together
• We can represent the ray as a 3D parametric line

p(t) = e + t (s-e)

(now you know how to get s and e)

• Typically we offset the ray by half

of the pixel width and height, i.e, cast the ray from the pixel
center

e
s s-e

incrementing
(i,j)

(0,0)

Put it all together
• We can represent the ray as a 3D parametric line

p(t) = e + t (s-e)

(now you know how to get s and e)

• Typically we offset the ray by half

of the pixel width and height, i.e, cast the ray from the pixel
center

e
s s-e

incrementing
(i,j)

(0,0)

Ray-Sphere Intersection

• Problem: Intersect a line with a sphere
✓ A sphere with center c = (xc,yc,zc) and radius R can be

represented as:

(x-xc) + (y-yc) + (z-zc) - R = 0

✓ For a point p on the sphere, we can write the above in
vector form:

(p-c).(p-c) - R = 0 (note ‘.’ is a dot product)

✓ We can plug the point on the ray p(t) = e + t d

(e+td-c).(e+td-c) - R = 0 and yield

(d.d) t + 2d.(e-c)t + (e-c).(e-c) - R = 0

2 2 2 2

2

2

2 2

Ray-Sphere Intersection

• When solving a quadratic equation

at + bt + c = 0

We have

• Discriminant

• and Solution

2

Ray-Sphere Intersection
b2 – 4ac < 0 ⇒ No intersection
b2 – 4ac > 0 ⇒ Two solutions (enter and exit)
b2 – 4ac = 0 ⇒ One solution (ray grazes sphere)

 Should we use the larger or smaller t value?

Ray-Sphere Intersection
b2 – 4ac < 0 ⇒ No intersection
b2 – 4ac > 0 ⇒ Two solutions (enter and exit)
b2 – 4ac = 0 ⇒ One solution (ray grazes sphere)

 Should we use the larger or smaller t value?

Calculate Normal

• Needed for computing lighting

Q = P(t) – C … and remember Q/||Q||

C t

Q

Calculate Normal

• Needed for computing lighting

Q = P(t) – C … and remember Q/||Q||

C t

Q
normal

Choose the closet sphere

• Minimum search problem

For each pixel {
form ray from eye through the pixel center
tmin = ∞
For each object {

if (t = intersect(ray, object)) {
if (t < tmin) {

closestObject = object
tmin = t

}
}

}
}

Final Pixel Color

if (tmin == ∞)
 pixelColor = background color
else
 pixelColor = color of object at d along ray

d

rayeye object

CSE 681
Ray-Object Intersections:

Axis-aligned Box

Ray-Box Intersection Test

X = x1 X = x2

Y = y2

Y = y1

Z = z1

Z = z2

Ray-Box Intersection Test

X = x1 X = x2

Y = y2

Y = y1

Z = z1

Z = z2

Ray-Box Intersection Test

• Intersect ray with each plane
– Box is the union of 6 planes

x = x1, x = x2

y = y1, y = y2

z = z1, z = z2

X = x1 X = x2

Y = y2

Y = y1

Z = z1

Z = z2

Ray-Box Intersection Test

• Intersect ray with each plane
– Box is the union of 6 planes

x = x1, x = x2

y = y1, y = y2

z = z1, z = z2

• Ray/axis-aligned plane
 is easy:

X = x1 X = x2

Y = y2

Y = y1

Z = z1

Z = z2

Ray-Box Intersection Test

• Intersect ray with each plane
– Box is the union of 6 planes

x = x1, x = x2

y = y1, y = y2

z = z1, z = z2

• Ray/axis-aligned plane
 is easy:

X = x1 X = x2

Y = y2

Y = y1

Z = z1

Z = z2

Ray-Box Intersection Test

• Intersect ray with each plane
– Box is the union of 6 planes

x = x1, x = x2

y = y1, y = y2

z = z1, z = z2

• Ray/axis-aligned plane
 is easy:

 E.g., solve x component: ex + tDx = x1

X = x1 X = x2

Y = y2

Y = y1

Z = z1

Z = z2

Ray-Box Intersection Test

X = x1 X = x2

Y = y2

Y = y1

Z = z1

Z = z2

Ray-Box Intersection Test

X = x1 X = x2

Y = y2

Y = y1

Z = z1

Z = z2

Ray-Box Intersection Test

1. Intersect the ray with each plane
2. Sort the intersections

X = x1 X = x2

Y = y2

Y = y1

Z = z1

Z = z2

Ray-Box Intersection Test

1. Intersect the ray with each plane
2. Sort the intersections
3. Choose intersection

X = x1 X = x2

Y = y2

Y = y1

Z = z1

Z = z2

Ray-Box Intersection Test

1. Intersect the ray with each plane
2. Sort the intersections
3. Choose intersection
 with the smallest t > 0

X = x1 X = x2

Y = y2

Y = y1

Z = z1

Z = z2

Ray-Box Intersection Test

1. Intersect the ray with each plane
2. Sort the intersections
3. Choose intersection
 with the smallest t > 0
 that is within the range

X = x1 X = x2

Y = y2

Y = y1

Z = z1

Z = z2

Ray-Box Intersection Test

1. Intersect the ray with each plane
2. Sort the intersections
3. Choose intersection
 with the smallest t > 0
 that is within the range
 of the box X = x1 X = x2

Y = y2

Y = y1

Z = z1

Z = z2

Ray-Box Intersection Test

1. Intersect the ray with each plane
2. Sort the intersections
3. Choose intersection
 with the smallest t > 0
 that is within the range
 of the box X = x1 X = x2

Y = y2

Y = y1

Z = z1

Z = z2

Ray-Box Intersection Test

1. Intersect the ray with each plane
2. Sort the intersections
3. Choose intersection
 with the smallest t > 0
 that is within the range
 of the box

• We can do more

X = x1 X = x2

Y = y2

Y = y1

Z = z1

Z = z2

Ray-Box Intersection Test

1. Intersect the ray with each plane
2. Sort the intersections
3. Choose intersection
 with the smallest t > 0
 that is within the range
 of the box

• We can do more
 efficiently

X = x1 X = x2

Y = y2

Y = y1

Z = z1

Z = z2

Only Consider 2D for Now
• if a point (x,y) is in the box, then (x,y) in

[x1 , x2] x [y1, y2]

x = x1 x = x2

y = y1

y = y1

The Principle
• Assuming the ray hits the box boundary lines at

intervals [txmin,txmax], [tymin,tymax], the ray
hits the box if and only if the intersection of the
two intervals is not empty

28

txmin txmax

tymin tymax

tymin

tymax

txmin

txmax

Pseudo Code

txmin =(x1 - ex)/Dx
txmax =(x2 - ex)/Dx
tymin = (y1 - ey)/Dy
tymax = (y2 - ey)/Dy
if (txmin > tymax) or (tymin > txmax)

return false
else
 return true

29

//assume Dx >0

//assume Dy >0

30

Pseudo Code

6

//if Dx < 0

//if Dy < 0

txmin =(x2 - ex)/Dx
txmax =(x1 - ex)/Dx
tymin = (y2 - ey)/Dy
tymax = (y1 - ey)/Dy
if (txmin > tymax) or (tymin > txmax)
return false
else
 return true

Now Consider All Axis

• We will calculate t1 and t2 for each axis (x,
y, and z)

• Update the intersection interval as we
compute t1 and t2 for each axis

• remember:
t1=(x1- px)/Dx

t2=(x2- px)/Dx

x = x1 x = x2

p

D

t1

t2

Update [tnear, tfar]
• Set tnear = -∞ and tfar = +∞
• For each axis, compute t1 and t2

– make sure t1 < t2
– if t1 > tnear, tnear =t1
– if t2 < tfar, tfar = t2

• If tnear > tfar, box is missed

x = x1 x = x2

p

D

t1

t2

Algorithm
Set tnear = - ∞, tfar = ∞
R(t) = p + t * D
For each pair of planes P associated with X, Y, and Z do: (example uses X

planes)
if direction Dx = 0 then

 if (px < x1 or px > x2)
 return FALSE
 else

 begin
 t1 = (xl - px) / Dx
 t2 = (xh - px) / Dx
 if t1 > t2 then swap (t1, t2)

 if t1 > tnear then tnear = t1
 if t2 < tfar then tfar = t2
 if tnear > tfar return FALSE

 if tfar < 0 return FALSE
 end

Return tnear

Special Case
• Ray is parallel to an axis

– If Dx = 0 or Dy = 0 or Dz = 0

• px < x1 or px > x2 then miss
y =y2

y=Y1

x=X1 x=X2

p

D

Special Case

• Box is behind the eye
– If tfar < 0, box is behind

x = x1 x = x2

p
D

