COG468 Classic Paper 1 Title: Computer Machinery and Intelligence Author: A. M. Turing # Summary/Hook This article addresses the broad question proposed by Turing, "Can machines think?" A main feature of this paper is the analysis of the 'imitation game' through various perspectives with reference to fields of cognitive science. The idea of building a machine capable of solving such a problem – having the machine think and act as a human would – is of much controversy. Of course, a physical system need not be necessary, as a program may be able to achieve the same goal without having the "skin of a man". This theory of a computational program that is implementable to thought problems is identifiable with the Turing Machine. Through analysis of such learning machines the real problem of discussion emerges: artificial intelligence. ### **Knowledge Relating to the Cognitive Science Program Learning Outcomes** #### 1. Consciousness and Controversies The new form of the problem can be described in terms of a game which we call the 'imitation game'. It is played with three people, a man (A), a woman (B), and an interrogator (C) who may be of either sex. The interrogator stays in a room apart front the other two. The object of the game for the interrogator is to determine which of the other two is the man and which is the woman. He knows them by labels X and Y, and at the end of the game he says either "X is A and Y is B" or "X is B and Y is A." ### 2. Algorithms and Automata The digital computers considered in the last section may be classified amongst the "discrete-state machines." These are the machines which move by sudden jumps or clicks from one quite definite state to another. These states are sufficiently different for the possibility of confusion between them to be ignored. Strictly speaking there, are no such machines. Everything really moves continuously. But there are many kinds of machine which can profitably be thought of as being discrete-state machines. For instance, in considering the switches for a lighting system it is a convenient fiction that each switch must be definitely on or definitely off. There must be intermediate positions, but for most purposes we can forget about them. ### 3. Formal Systems and Theories of Computation There are a number of results of mathematical logic which can be used to show that there are limitations to the powers of discrete-state machines. The best known of these results is known as Godel's theorem (1931) and shows that in any sufficiently powerful logical system statements can be formulated which can neither be proved nor disproved within the system, unless possibly the system itself is inconsistent. There are other, in some respects similar, results due to Church (1936), Kleene (1935), Rosser, and Turing (1937). The latter result is the most convenient to consider, since it refers directly to machines, whereas the others can only be used in a comparatively indirect argument: for instance, if Godel's theorem is to be used we need in addition to have some means of describing logical systems in terms of machines, and machines in terms of logical systems. The result in question refers to a type of machine which is essentially a digital computer with an infinite capacity. It states that there are certain things that such a machine cannot do. If it is rigged up to give answers to questions as in the imitation game, there will be some questions to which it will either give a wrong answer, or fail to give an answer at all however much time is allowed for a reply. ## 4. Algorithms and Automata It seems to me that this criticism depends on a confusion between two kinds of mistake, we may call them "errors of functioning" and "errors of conclusion." Errors of functioning are due to some mechanical or electrical fault which causes the machine to behave otherwise than it was designed to do. In philosophical discussions one likes to ignore the possibility of such errors; one is therefore discussing "abstract machines." These abstract machines are mathematical fictions rather than physical objects. By definition they are incapable of errors of functioning. In this sense we can truly say that "machines can never make mistakes." Errors of conclusion can only arise when some meaning is attached to the output signals from the machine. The machine might, for instance, type out mathematical equations, or sentences in English. When a false proposition is typed we say that the machine has committed an error of conclusion. There is clearly no reason at all for saying that a machine cannot make this kind of mistake. It might do nothing but type out repeatedly "O = I." To take a less perverse example, it might have some method for drawing conclusions by scientific induction. We must expect such a method to lead occasionally to erroneous results. ### 5. Neural Networking As I have explained, the problem is mainly one of programming. Advances in engineering will have to be made too, but it seems unlikely that these will not be adequate for the requirements. Estimates of the storage capacity of the brain vary from 1010 to 1015 binary digits. I incline to the lower values and believe that only a very small fraction is used for the higher types of thinking. Most of it is probably used for the retention of visual impressions, I should be surprised if more than 109 was required for satisfactory playing of the imitation game, at any rate against a blind man. (Note: The capacity of the Encyclopaedia Britannica, 11th edition, is 2 X 109) A storage capacity of 107, would be a very practicable possibility even by present techniques. It is probably not necessary to increase the speed of operations of the machines at all. Parts of modern machines which can be regarded as analogs of nerve cells work about a thousand times faster than the latter. This should provide a "margin of safety" which could cover losses of speed arising in many ways, our problem then is to find out how to programme these machines to play the game. At my present rate of working I produce about a thousand digits of progratiirne a day, so that about sixty workers, working steadily through the fifty years might accomplish the job, if nothing went into the wastepaper basket. Some more expeditious method seems desirable.