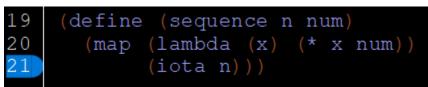
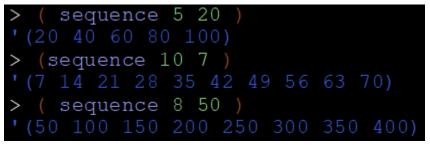

Abstract:

The Racket programming assignment tested our problem-solving skills and taught us about the significance of RLP and HoFs. We gained an appreciation for their usefulness and importance in programming.

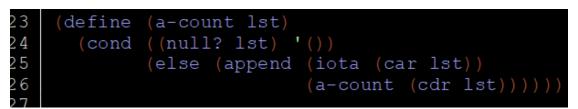
Task 1 - Simple List Generators

Task 1c - Alternator Code:


```
12
13 (define (alternator n lst)
14 (if (= n 0)
15 '()
16 (cons (car lst)
17 (alternator (- n 1) (append (cdr lst) (list (car lst)))))))
```

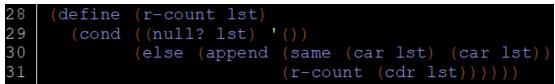

Demo:

Task 1d - Sequence

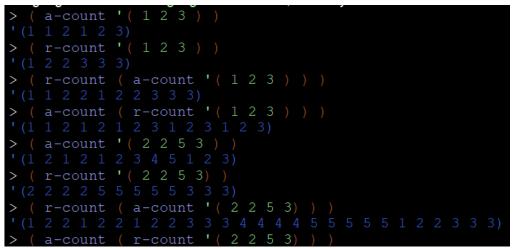

Code:

Task 2 - Counting

Task 2a - Accumulation Counting Code:




Demo:


Task 2b - Repetition Counting

Code:

Task 2c - Mixing Counting Demo

Task 3 : Association Lists

Task 3a:

Code:

(define	(zip	lst1 ls	st2)	
(cond	((or	(null?	lst1)	(null? lst2)) '())
	(else	(cons	(cons	(car lst1) (car lst2))
			(zip	(cdr lst1) (cdr lst2))))))

Demo:

```
> ( zip '(one two three four five) '(un deuz trois quatre cinq) )
'((one . un) (two . deuz) (three . trois) (four . quatre) (five . cinq))
> ( zip '(one two three four five) '(un deux trois quatre cinq) )
'((one . un) (two . deux) (three . trois) (four . quatre) (five . cinq))
> ( zip '() '() )
'()
> (zip '(this) '(that) )
'((this . that))
> ( zip '( one two three) '( (1) (2 2) (3 3 3) ) )
'((one 1) (two 2 2) (three 3 3 3))
```

Task 3b -Assoc

Code:

```
(define (assoc key alist)
  (cond ((null? alist) '())
            ((eq? key (caar alist)) (car alist))
            (else (assoc key (cdr alist)))))
```

```
> (define al1
   (zip '( one two three four) '( un deux trois quatre)
  )
> (define al2
   (zip '(one two three) '( (1) (2 2) (3 3 3) ))
  )
> al1
'((one . un) (two . deux) (three . trois) (four . quatre)
> ( assoc 'two al1 )
'(two . deux)
> ( assoc 'two al1)
'()
> al2
'((one 1) (two 2 2) (three 3 3 3))
> ( assoc 'three al2)
'(three 3 3 3)
> ( assoc 'four al2)
'()
```

Task 3c - Establishing some Association Lists

Code:

```
(define (assoc key alist)
  (cond ((null? alist) '())
        ((eq? key (caar alist)) (car alist))
        (else (assoc key (cdr alist)))))
( define scale-zip-CM
( zip ( iota 7 ) '("C" "D" "E" "F" "G" "A" "B") )
( define scale-zip-short-Am
( zip ( iota 7 ) '("A/2" "B/2" "C/2" "D/2" "E/2" "F/2" "G/2") )
( define scale-zip-short-low-Am
( zip ( iota 7 ) '("A,/2" "B,/2" "C,/2" "D,/2" "E,/2" "F,/2" "G,/2") )
( define scale-zip-short-low-Am
( zip ( iota 7 ) '("A,/2" "B,/2" "C,/2" "D,/2" "E,/2" "F,/2" "G,/2") )
( define scale-zip-short-low-blues-Dm
( zip ( iota 7 ) '( "D,/2" "F,/2" "G,/2" "_A,/2" "A,/2" "c,/2" "d,/2" ) )
( define scale-zip-wholetone-C
( zip ( iota 7 ) '("C" "D" "E" "^F" "^G" "^A" "c") )
```

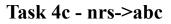
> scale-zip-CM
'((1 . "C") (2 . "D") (3 . "E") (4 . "F") (5 . "G") (6 . "A") (7 . "B"))
> scale-zip-short-Am
'((1 · "A/2")
> scale-zip-short-low-Am
'((1 . "A,/2")
> scale-zip-short-low-blues-Dm
'((1 . "D,/2")
> scale-zip-wholetone-C
'((1 . "C") (2 . "D") (3 . "E") (4 . "^F") (5 . "^G") (6 . "^A") (7 . "c"))

Task 4 - Number to Notes to ABC

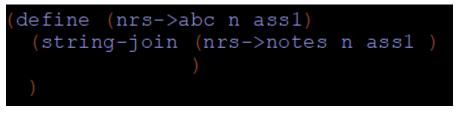
Task 4a - nr->note

Code:

(define (nr->note nr alist) (cdr (assoc nr alist)))


```
> ( nr->note 1 scale-zip-CM )
"C"
> (nr->note 1 scale-zip-short-Am )
"A/2"
> ( nr->note 1 scale-zip-short-low-Am)
"A,/2"
> ( nr->note 3 scale-zip-CM )
"E"
> ( nr->note 4 scale-zip-short-Am )
"D/2"
> ( nr->note 5 scale-zip-short-low-Am)
"E,/2"
> ( nr->note 4 scale-zip-short-low-Dlues-Dm )
"_A,/2"
> ( nr->note 4 scale-zip-wholetone-C )
$\infty m_r->: undefined;
cannot reference an identifier before its defi
> ( nr->note 4 scale-zip-wholetone-C )
"^F"
```

Task 4b - nrs->notes Code:


```
(define (nrs->notes nrs alist)
  (map (lambda (nr) (cdr (assoc nr alist))) nrs))
```

Demo:

> (nrs->notes '(3 2 3 2 1 1) scale-zip-CM)
'("E" "D" "E" "D" "C" "C")
> (nrs->notes '(3 2 3 2 1 1) scale-zip-short-Am)
'("C/2" "B/2" "C/2" "B/2" "A/2" "A/2")
> (nrs->notes (iota 7) scale-zip-short-low-Am)
'("A,/2" "B,/2" "C,/2" "D,/2" "E,/2" "F,/2" "G,/2")
> (nrs->notes (a-count '(4 3 2 1)) scale-zip-CM)
'("C" "D" "E" "F" "C" "D" "E" "C" "D" "C")
> (nrs->notes (r-count '(4 3 2 1)) scale-zip-CM)
'("F" "F" "F" "F" "E" "E" "D" "D" "C")
> (nrs->notes (a-count (r-count '(1 2 3)))scale-zip-CM)
'("C" "C" "D" "C" "D" "C" "D" "E" "C" "D" "E" "C" "D" "E")
> (nrs->notes (r-count (r-count '(1 2 3))) scale-zip-CM)
'("C" "D" "D" "D" "E" "E" "E" "E" "E" "E" "E

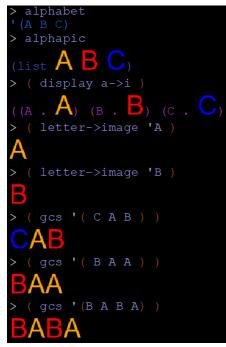
Code:

Task 5 - Stella

Code:

<pre>> (stella '((70 . silver) (140 . black) (210 . silver) (280 . black))) </pre>	
> (stella (zip (sequence 11 25) (alternator 11 '(red gold))))	
> (stella (zip (sequence 15 18) (alternator 15 '(yellow orange brown)))

Task 6 - Chromesthetic Renderings


Code:

```
define pitch-classes '( c d e f g a b ) )
define color-names '( blue green brown purple red yellow orange )
        ( overlay
( square 30 "solid" color )
( square 35 "solid" "black" )
11
12
13
        define boxes
        ( box "blue" )
( box "green" )
( box "brown" )
( box "purple"
( box "red" )
( box "gold" )
( box "orange"
22
23
24
25
26
27
28
29
30
      ( cons ( cons ( car list1 ) ( car list2 ) ) ( a-list ( cdr list1 ) ( cdr list2 ) ) )
36
37
38
           define cb-a-list ( a-list color-names boxes )
39
40
41
42
           define ( color->box color )
( cdr ( assoc color cb-a-list ) )
43
44
45
46
47
48
             map ( lambda (a) ( pc->color a ) ) notes )
             foldr beside empty-image rainbow-squares )
 52
```

>	(pla	У	•	С	d	e	f	g	а	b	С	С	b	а	g	f	е	d	c))	
>		pla	У	I	С	С	g	g	a	a	g	g	f	f	е	е	d	d	С	С))	
>		pla	У	•	С	d	е	С	С	d	е	С	е	f	g	g	е	f	g	g			

Task 7: Grapheme to Color Synesthesia Code:

3	(require 2htdp/image)
4	(define AI (text "A" 36 "orange"))
5	(define BI (text "B" 36 "red"))
6	(define CI (text "C" 36 "blue"))
7	(define DI (text "D" 36 "chocolate"))
8	(define EI (text "E" 36 "green"))
9	(define FI (text "F" 36 "indigo"))
10	(define GI (text "G" 36 "dark gray"))
11	(define HI (text "H" 36 "yellow"))
12	(define II (text "I" 36 "violet"))
13	(define JI (text "J" 36 "steel blue"))
14	(define KI (text "K" 36 "yellow green"))
15	(define LI (text "L" 36 "tan"))
16	(define MI (text "M" 36 "khaki"))
17	(define NI (text "N" 36 "olive"))
18	(define OI (text "O" 36 "maroon"))
19 20	(define PI (text "P" 36 "sandy brown")) (define OI (text "O" 36 "forest green"))
20	(define QI (text "Q" 36 "forest green")) (define RI (text "R" 36 "light blue"))
22	(define SI (text "S" 36 "dodger blue"))
23	(define TI (text "T" 36 "cadetblue"))
24	(define UI (text "U" 36 "goldenrod"))
25	(define VI (text "V" 36 "orchid"))
26	(define WI (text "W" 36 "plum"))
27	(define XI (text "X" 36 "indian red"))
28	(define YI (text "Y" 36 "aqua"))
29	(define ZI (text "Z" 36 "sienna"))
30	(define alphabet '(A B C D E F G H I J K L M N O P Q R S T U V W X Y
31	2))
32	(define alphapic (list AI BI CI DI EI FI GI HI II JI KI LI MI NI OI
33	PIQIRISITIUIVIWIXIYIZI))
34 35	<pre>(define (a-list list1 list2) (define x (length list2))</pre>
36	Cond
36 37	$(\text{ cond} ((= \mathbf{x} \ 0))$
37	$((= \mathbf{x} \ 0))$
37 37	$((= \mathbf{x} \ 0))$
37 37 38	$((= \mathbf{x} \ 0))$
37 37 38 39	$ \begin{pmatrix} (= x & 0 \\ (= x & 0 \\) \end{pmatrix} $
37 37 38 39 40	((= x 0) ((= x 0) '()) (else
37 38 39 40 41	<pre>((= x 0) ((= x 0) '()) (else (cons (cons (car list1) (car list2)) (a-list (cdr</pre>
37 38 39 40 41 42	((= x 0) ((= x 0) '()) (else
37 38 39 40 41 42 43	<pre>((= x 0) ((= x 0) '()) (else (cons (cons (car list1) (car list2)) (a-list (cdr</pre>
37 38 39 40 41 42 43 44	<pre>((= x 0) ((= x 0) '()) (else (cons (cons (car list1) (car list2)) (a-list (cdr</pre>
37 38 39 40 41 42 43 44 45	<pre>((= x 0) ((= x 0) '()) (else (cons (cons (car list1) (car list2)) (a-list (cdr list1) (cdr list2)))))))</pre>
37 38 39 40 41 42 43 44 45 46	<pre>((= x 0) ((= x 0) '()) (else (cons (cons (car list1) (car list2)) (a-list (cdr list1) (cdr list2))))) (define (assoc text any-list)</pre>
37 38 39 40 41 42 43 44 45 46 47	<pre>((= x 0) ((= x 0) ((= x 0) () (else (cons (cons (car list1) (car list2)) (a-list (cdr list1) (cdr list2)))))) (define (assoc text any-list) (cond</pre>
37 38 39 40 41 42 43 44 45 46 47 48	<pre>((= x 0) ((= x 0) '()) (else (cons (cons (car list1) (car list2)) (a-list (cdr list1) (cdr list2))))) (define (assoc text any-list) (cond ((eq? any-list '())</pre>
37 38 39 40 41 42 43 44 45 46 47	<pre>((= x 0) ((= x 0) ((= x 0) () (else (cons (cons (car list1) (car list2)) (a-list (cdr list1) (cdr list2)))))) (define (assoc text any-list) (cond</pre>
37 38 39 40 41 42 43 44 45 46 47 48 49	<pre>((= x 0) ((= x 0)</pre>
37 38 39 40 41 42 43 44 45 46 47 48 49 50	<pre>((= x 0) ((= x 0) '()) (else (cons (cons (car list1) (car list2)) (a-list (cdr list1) (cdr list2))))) (define (assoc text any-list) (cond ((eq? any-list '())</pre>
37 38 39 40 41 42 43 44 45 46 47 48 9 50 51	<pre>((= x 0) ((= x 0) ((= x 0) () (else (cons (cons (car list1) (car list2)) (a-list (cdr list1) (cdr list2))))) (define (assoc text any-list) (cond ((eq? any-list '()) '()) ((equal? (car (car any-list)) text)</pre>
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	<pre>((= x 0) ((= x 0) ((= x 0) () (else (cons (cons (car list1) (car list2)) (a-list (cdr list1) (cdr list2))))) (define (assoc text any-list) (cond ((eq? any-list '()) '()) ((equal? (car (car any-list)) text)</pre>
37 37 38 40 41 42 43 44 45 46 47 48 50 51 52 53	<pre>((= x 0)</pre>
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	<pre>((= x 0)</pre>
$\begin{array}{c} 37\\ 37\\ 38\\ 40\\ 412\\ 43\\ 445\\ 447\\ 450\\ 551\\ 553\\ 555\\ 57\\ \end{array}$	<pre>((= x 0)</pre>
$\begin{array}{c} 37\\ 37\\ 38\\ 40\\ 412\\ 43\\ 445\\ 447\\ 450\\ 551\\ 556\\ 556\\ 556\\ 58\end{array}$	<pre>((= x 0)</pre>
37 378 401 445 445 5523 55555 555555 55555 55555	<pre>((= x 0)</pre>
37 37890 412344 445555555555555555556 5590	<pre>((= x 0) ((= x 0) ((= x 0) () (else (cons (cons (car list1) (car list2)) (a-list (cdr list1) (cdr list2)))) (define (assoc text any-list) (cond ((eq? any-list '()) ((equal? (car (car any-list)) text) (car any-list) (else (assoc text (cdr any-list)) (define a->i (a-list alphabet alphapic)) (define (letter->image alphabet) (cdr (assoc alphabet a->i)))</pre>
$\begin{array}{c} 37\\ 339\\ 412\\ 44445\\ 5555555555555567\\ 5561 \end{array}$	<pre>((= x 0) ((= x 0) ((= x 0) ((= x 0) (else (cons (cons (car list1) (car list2)) (a-list (cdr list1) (cdr list2)))) (define (assoc text any-list) (cond ((eq? any-list '()) ((equal? (car (car any-list)) text) (car any-list) (else (assoc text (cdr any-list))) (define a->i (a-list alphabet alphapic)) (define (letter->image alphabet) (cdr (assoc alphabet a->i))) (define (gcs letters)) </pre>
$\begin{array}{c} 37\\ 339\\ 4423\\ 44444445555555555555$	<pre>((= x 0) ((= x 0) ((= x 0) (else (cons (cons (car list1) (car list2)) (a-list (cdr list1) (cdr list2)))) (define (assoc text any-list) (cond ((eq? any-list '()) (() ((equal? (car (car any-list)) text) (car any-list) (else (assoc text (cdr any-list))) (define a->i (a-list alphabet alphapic)) (define (letter->image alphabet) (cdr (assoc alphabet a->i))) (define (gcs letters) (cond</pre>
$\begin{array}{c} 37\\ 389\\ 442\\ 444444456\\ 5555555556662\\ 63\end{array}$	<pre>((= x 0) ((= x 0) ((= x 0) (else (cons (cons (car list1) (car list2)) (a-list (cdr list1) (cdr list2)))) (define (assoc text any-list) (cond ((eq? any-list '()) (() ((equal? (car (car any-list)) text) (car any-list) (else (assoc text (cdr any-list)) (define a->i (a-list alphabet alphapic)) (define (letter->image alphabet) (cdr (assoc alphabet a->i)))) (define (gcs letters) (cond ((empty? letters) (empty-image))</pre>
$\begin{array}{c} 3 \\ 7 \\ 7 \\ 8 \\ 9 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4$	<pre>((= x 0)</pre>
$\begin{array}{c} 3 \\ 7 \\ 7 \\ 3 \\ 3 \\ 9 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4$	<pre>((= x 0) ((= x 0) ((= x 0) (else (cons (cons (car list1) (car list2)) (a-list (cdr list1) (cdr list2)))) (define (assoc text any-list) (cond ((eq? any-list '()) (() ((equal? (car (car any-list)) text) (car any-list) (else (assoc text (cdr any-list)) (define a->i (a-list alphabet alphapic)) (define (letter->image alphabet) (cdr (assoc alphabet a->i)))) (define (gcs letters) (cond ((empty? letters) (empty-image))</pre>
$\begin{array}{c} 3 \\ 7 \\ 7 \\ 8 \\ 9 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4$	<pre>((= x 0)</pre>

Demo2:

> (gcs '(A L P H A B E T))
ALPHABET
> (gcs '(D A N D E L I O N))
DANDELION
> (gcs '(O S W E G O))
OSVEGO
> (gcs '(O S W E G O))
VATER
> (gcs '(W A T E R))
VATER
> (gcs '(A P P L E))
APPLE
> (gcs '(L A P T O P))
LAPTOP
> (gcs '(C O F F E E))
COFFEE
> (gcs '(C O D E))
CODE
> (gcs '(I S L A N D))
ISLAND
> (gcs '(L O N G))
LONG