Project Task 11:

Minimax Part 1
By Carrie Corcoran

This is the seventh task for my semester- long project of creating mancala playing machines,
and the first task related to Minimax. In this task, I defined how to save a game state and the static
evaluation function. This task is relatively light on code as it came with additional research into
Minimax AL

Code:

(defun save-state (current)
(cond
(current
(setf state (list
(al) (a2) (a3) (a4) (ad) (ao6) (ah) (bl) (b2) (b3) (b4) (b5) (b6) (bh)))
)
(t
(setf state (list (get al-copy value) (get a2-copy
value) (get a3-copy value) (get ad-copy value)
(get ab-copy wvalue) (get a6b-copy value) (get ah-copy
value) (get bl-copy value)
(get b2-copy value) (get b3-copy value) (get bd-copy
value) (get bb5-copy value)
(get b6-copy value) (get bh-copy value)))
)

state

)

(defun static-eval-function (state player)
(cond
((eql player 'a)
(- (nth 6 state) (nth 13 state))
)
(t
(- (nth 13 state) (nth 6 state))
)

)

(defun create-node (player state move)
(list player state move (static-eval-function state player))

)



Demo:

(1>

Testing starting state for player A:

(static—-eval-test)

Making move:

| HB B6
.
I'r1le

110 T1__
R
I

N
| Al

0

Testing state after move for player A:
Testing state after move for player B:

NIL

3
-3



