
Developing a Repeated Multi-Agent Constant-Sum Game Algorithm Using 
Human Computation  

 

Christopher G. Harris 
Informatics Program 

The University of Iowa 
Iowa City, Iowa  USA 

christopher-harris@uiowa.edu 
 

Abstract— In repeated multi-agent constant-sum games, 
each player’s objective is to maximize control over a finite 
set of resources. We introduce Tenspotter, an easy-to-use 
publicly-available game designed to allow human players to 
compete as agents against a machine algorithm. The 
algorithm learns play strategies from humans, reduces them 
to nine basic strategies, and uses this knowledge to build and 
adapt its collusion strategy. We use a tournament format to 
test our algorithm against human players as well as against 
other established multi-agent algorithms taken from the 
literature. Through these tournament experiments, we 
demonstrate how learning techniques adapted using human 
computation – information obtained from both human and 
machine inputs – can contribute to the development of an 
algorithm able to defeat two well-established multi-agent 
machine algorithms in tournament play. 

Keywords- intelligent agents; multi-agent games; constant-sum 
games; Tenspotter; human computation; Android-based games 

I.  INTRODUCTION 

The objective of a multi-agent, constant-sum game is 
for players to coordinate a series of moves in order to 
control a finite set of resources. Take an example of two 
competing retailers located along a busy shopping street, 
each selling an identical product at a fixed price. Each 
retailer wants to maximize market share by drawing the 
largest number of customers. Assuming a uniform 
distribution of customers along the street and assuming 
that each customer will always choose the nearest shop, 
Hotelling's law [5] predicts that a street with two shops 
will optimally find both shops right next to each other at 
the same halfway point, each capturing the customers on 
their respective side of the halfway point. Thus, each 
retailer will serve half the market. With three shops, the 
optimal (stable) situation is to find each store at locations 
one-sixth, half-way, and five-sixth along the length of the 
same street. Now consider how this balance might change 
if the street was circular in shape or if store locations 
could change frequently without the advanced knowledge 
of the other retailers?   

The Lemonade Game (LG) is a tournament introduced 
by Zinkevich et. al. [15] in 2009 based on the game of the 
same name. The game scenario is set up as follows. It is 
summer on a circular island and vendors decide to set up a 
lemonade stand on the beach, which extends around the 
island’s perimeter. You compete with two other vendors. 
In LG there are twelve possible lemonade stand locations 
around the island, arranged like a clock dial. The price of 
lemonade is fixed for all vendors, and customers always 
visit the lemonade stand closest to them. Each night, all 
vendors move simultaneously under the cover of darkness 
to a new location. No costs are associated with moving to 

a new spot. After 100 days of summer (each day is 
considered a round), the game is over. The total utility for 
each vendor of this repeated game is the cumulative sum 
of the utilities of each round. The vendor with the largest 
total utility is considered the game’s winner. 

Many three-agent negotiation algorithms, such as 
those used in LG, work by coordinating a series of moves 
with one of the two opponents in an effort to exploit the 
third opponent. These algorithms often rely on identifying 
and predicting each opponent’s strategy, determining the 
ideal opponent for collusion, and exploiting the identified 
opportunity. However, there are numerous potential 
strategies involved with collusion attempts – some are 
mutually compatible while some are not. We discuss two 
well-known multi-agent algorithms later in this paper. 

To illustrate and test these collusion attempts, we 
introduce Tenspotter, a multi-agent game designed to 
examine how both human players and algorithms 
recognize collusive behavior and adapt. A screenshot is 
shown in Fig. 1. Although easy to learn and play, 
Tenspotter is a challenge to master: state-of-the art 
algorithms fail when matched against even a simple 
strategy. Probability theory and Nash Equilibrium theory 
do not provide a single solution to this game [9]. 

Figure 1. The Tenspotter game interface 

Our contributions are as follows. First we introduce 
and describe Tenspotter, a three–player repeated constant–
sum game available online1 . Second, we describe the 
genesis of our algorithm from nine basic strategies, which 
represent those discussed in the literature and through our 
own empirical evaluation of human play. Third, we test 
our algorithm in two different experiments, each matched 
against opponents with different playing styles and 
characteristics: first, against human opponents and 
second, against leading repeated multi-agent constant-sum 
algorithms. We evaluate our performance against each.  

                                                           
1 Available for download at http://www.irgames.org/tenspotter/ 



II. RELATED WORK 

Using repeated games to examine normal-form (also 
called constant-sum) decision models has drawn 
considerable attention recently in fields such as computer 
science, economics and engineering, particularly because 
they provide insight into collusion between agents - each 
employing different strategies - in an attempt to maximize 
utility. However, relatively little research has been done 
on the intersection of game-based normal-form decision–
making models and autonomous agents, except for 
repeated games. 

Although first described by Axelrod in [2], studies 
involving the iterated prisoner’s dilemma have been 
described extensively in the literature, (e.g., [1, 3]). The 
prisoner's dilemma competition differs from the 
autonomous agent-based games, such as Tenspotter, in a 
few important ways. In a prisoner's dilemma competition, 
the act of cooperation between agents is clearly identified. 
Moreover, since most repeated prisoner’s dilemma games 
typically only involve two agents, the target of an agent’s 
cooperation is obvious.  

There have been numerous studies that examine 
repeated ultimatum games, (e.g., [7, 12]) and repeated 
negotiation games, (e.g., [6, 8]). Each of these studies 
examines the underlying importance of two issues: 
detecting each opponent’s strategy and adapting one’s 
own strategy based on this detection.  

Perhaps the best-known repeated game involving 
autonomous agents is the Lemonade Game (LG), offered 
as annual tournament since 2009 [15]. Several participants 
have described the algorithms used in their approaches. In 
[13], Sykulski et. al. describe an algorithm they used to 
defeat other algorithms in the initial LG challenge. They 
detect the best opponent to collude with based on two 
conditions – “sticking” or “shadowing” the chosen 
opponent. To detect the best partner for collusion, their 
algorithm compares the strategy of each opponent with 
that of an “optimal” opponent. Wunder et. al. [14] groups 
the LG strategies into levels of complexity, and applies a 
cognitive hierarchy approach to examine how these levels 
might be exploited. Likewise, Reitter et. al.[10] 
investigated three techniques: “stick”, “random” and 
“roll”, using a metacognitive approach. In each of these 
three approaches, the authors illustrate portions of their 
algorithms, which we recreate later in this paper. 

III.  TENSPOTTER 

Tenspotter is a repeated-sum game offered as an 
Android application, designed to allow human players to 
play as an agent against algorithms built on these 
strategies. As the name Tenspotter implies, there are ten 
spots that can occupied by three participating agents. 
Agents independently select one of the ten spots in each 
round. Total utility for each round is 10 points and can be 
divided into fractional units, (shown in Fig. 2 and 3 as 
partially-shaded spots). Scoring in Tenspotter is done in 
the following way. Spots occupied by one or more players 
are split equally between each occupant. For the 
remaining unoccupied spots, we calculate the Euclidean 
distance to each of the three player-occupied spots and 
assign one point to the nearest player (in the case where 
the minimum distance is shared by more than one player, 
we divide the points equally between the players). This is 

referred to as a “sandwich” since Player 1 is sandwiched 
between the other two players and thus receives the 
minimum possible score of 1. The other two players earn 
a score of 4.5 points each. In the screenshots shown in 
Fig. 2 and 3, we use color shading for each spot. On the 
right of Fig. 2, all three players occupy the same spot 
(spot 2). In this case, all receive an equal payout of 3.33 
points. On the left of Fig. 3, Players 1 (blue) and 2 (red) 
occupy spot 7 and Player 3 (green) occupies spot 1. Utility 
in spots 4 and 9 are split 0.33/0.33/0.33 each, since the 
two spots are equidistant from all three players. In LG, the 
utility is split differently: 0.25/0.25/0.50. On the right of 
Fig. 3, Players 1 and 2 occupy spot 4 and Player 3 
occupies spot 9 – directly across the board from spot 4. In 
this case, utility is assigned in a 0.25/0.25/0.50 ratio, 
similar to LG. Utility for each player in each round is in 
the range (1, 5). Thus, a player’s maximum utility is 
observed when we have a single player occupying a spot 
directly opposite the other two players, the first player 
receiving a utility of 5 while the two opponents each 
receive a utility of 2.5. The worst case is to be sandwiched 
between two players (see Fig. 2, left), resulting in a utility 
of 1 while the two opponents receive a utility of 4.5 each. 
Stable competition occurs when all players achieve a 
minimum utility ≥ 2.5. 

 
Figure 1. Tenspotter screenshots showing a “sandwich” move on the red 
player (left); three players occupying the same spot and  therefore 
equally dividing utility (right). 

  
 
Figure 2. Tenspotter screenshots showing two players (red and blue) 
occupying the same spot, but not directly opposite the green player 
(left); directly opposite the green player (right). 

A. Basic Strategies 

The nine basic strategies considered here are either based 
on commonly-used strategies found in previously-
described LG algorithms from the literature or are 
strategies that demonstrated a compelling value through 
early empirical examination. The nine strategies are as 
follows. 
Random – generates a random number in the range (0,9) 
and occupies the corresponding spot until the next round.  
Stick – uses Random for the first round, then “sticks”, or 
retains that same spot for the duration of the game. 
Stick10 –similar to Stick, this strategy obtains a 
randomly-assigned spot number in the initial round and 
keeps the same spot for the next nine rounds. Every ten 



rounds thereafter, it randomly determines a new spot and 
sticks for the subsequent nine rounds 
Shadow – uses Random for the first round, Then, in 
round n (n > 1), it “shadows”, or moves to the same spot 
number of the cumulative point leader determined in the 
n-1th round. It repeats this action in every subsequent 
round. This is the same as the successful TIT-FOR-TAT 
described by Axelrod in [2], but here the opponent 
shadowed changes as the cumulative point leader changes. 
Shadow+5 – similar to the Shadow strategy, but instead it 
moves directly across the board (i.e., 5 spots away) from 
the cumulative point leader.  
Minimum  – uses Random for the initial spot. In 
subsequent rounds, it moves to the spot of the opponent 
that earned the lowest number of points in the n-1th round. 
If >1 player received the lowest score, it randomly 
determines which of the spots to occupy (the strategy also 
considers itself in the lowest-score evaluation). Note that 
unlike the shadow, which relies on the cumulative point 
leader, this strategy examines the score each player 
received in the immediately-preceding (n-1th) round only.  
Maximum  – takes the same approach as the Minimum 
strategy, but instead uses the player with the maximum 
point score from the previous round. 
Average – uses Random for the initial spot. In subsequent 
rounds, it determines the average of the two opponents’ 
spot numbers from the immediately-preceding (n-1th) 
round and moves to that position, rounded up to the 
nearest integer.  
Average+5 – similar to the Average strategy, but instead 
moves to the spot directly across the board (i.e., five spots 
away) from the average of the two opponents’ locations as 
determined in the immediately preceding (n-1th) round.  
TABLE I.  WIN PERCENTAGE FOR EACH BASIC STRATEGY PLAYED, 
ALONG WITH BEST AND WORST STRATEGIES PLAYED BY AN OPPONENT. 

P1 
strategy 
played 

P1 
strategy 
win rate 

Best strategy for 
P2 (P2 win rate 
vs. P1 strategy) 

Worst strategy for 
P2 (P2 win rate vs. 
P1 strategy) 

Random 0.505 Shadow+5 (0.476) Stick10 (0.173) 
Stick 0.259 Average+5 (0.763) Minimum (0.073) 
Stick10 0.328 Average+5 (0.714) Minimum (0.049) 
Shadow 0.266 Random (0.735) Maximum (0.067) 
Shadow+5 0.466 Shadow (0.512) Random (0.166) 
Minimum  0.131 Average+5 (0.852) Average (0.146) 
Maximum 0.272 Average+5 (0.754) Shadow (0.097) 
Average 0.175 Average+5 (0.883) Minimum (0.049) 
Average+5 0.593 Maximum (0.349) Shadow+5 (0.103) 

 
Table I shows the probability of winning, given player 

P1 and player P2 each choose one of the nine basic 
strategies. This is based on simulation of 24,300 games of 
100 rounds each (2.43 million rounds). Table I also shows 
the best and worst strategy for player P2 to play against 
player P1. From this we can make some key observations. 
First, the Average+5 strategy is the most robust against 
the other eight strategies with an overall long-term win 
percentage of 0.593. However, should another player, 
aware that player P1 is playing the Average+5 strategy, 
decide to play the Maximum strategy, that second player 
has a 0.349 probability of winning – only slightly better 
than random (0.333). This winning percentage rate is also 
affected by the strategy chosen by the third player, but 
here we assume a long-run evaluation over a large number 

of rounds and that our third player, P3, randomly chooses 
to play one of the nine basic strategies in each round. 

We also notice some natural collaborations occur, 
such as between Average and Average+5, and between 
Shadow and Shadow+5. There is no single-best strategy – 
even the robust Average+5 strategy is defeated using a 
Maximum strategy. Fortunately, many of the successful 
LG algorithms, two of which we will consider later in this 
paper, focus on only three of these nine strategies – 
Random, Stick and Shadow.  

B. Advanced Strategies 

Using information gained from 2.43 million 
simulations and another 163,400 human participant 
interactions with our nine basic strategies, we create an 
algorithm to address the ordering of each strategy. Our 
algorithm is then refined through play against human and 
other collusion-seeking algorithms, using the probability 
for a move in round n based on the opponent locations in 
round n-1. To build this algorithm, we determine whether 
our agent should lead or lag a targeted opponent. Leading 
an opponent means a player’s chosen move in round n 
will affect the targeted opponent’s location in round n+1. 
Lagging an opponent means that in round n we predict a 
targeted opponent’s move for round n+1, and we move to 
an optimal position in round n+1 to exploit that opponent.  

When we are leading an opponent, as with Minimum, 
Maximum, Average, Average+5 (and with Stick or 
Stick10 if we are the cumulative point leader), we use the 
information from the immediately-preceding round to 
influence our move in the current round. With the Shadow 
and Shadow+5 strategies, if we are the current cumulative 
point leader in the game, we can perform a lag approach 
and can therefore anticipate the opponents move 
regardless of our current move. We can therefore move to 
a spot that maximizes the points received for that round. 

Few other algorithms stick to a single basic strategy 
throughout a game, but instead change frequently to adapt 
to the moves of its opponents. However, all algorithms 
play a strategy in every round – as we have discovered, 
this is typically a Stick, Shadow or a Random strategy. 

IV.  EXPERIMENT ON BASIC STRATEGIES 

Agent algorithms often form complex models using 
simple inputs as components. To address this, we perform 
a second online simulation to determine which of the nine 
basic strategies work best with leading, lagging, or 
switching to another opponent. In this second simulation, 
we conducted 24,300 games of 100 rounds each, 
evaluating our algorithm’s approach against every 
combination of basic strategies. We evaluated all strategy 
combinations to determine a probabilistic value for each 
of our approaches, which are summarized in Table II.  

TABLE II.  THE WIN PERCENTAGE FOR OUR ALGORITHM AGAINST 
EACH OF THE NINE BASIC STRATEGIES. 

Opponent 
strategy 
played 

Our win rate  
vs. opponent 
strategy played 

Opponent 
strategy 
played 

Our win rate 
vs. opponent 
strategy played 

Average 0.856 Stick10 0.702 
Minimum  0.841 Shadow+5 0.566 
Stick 0.763 Random 0.541 
Shadow 0.745 Average+5 0.441 
Maximum 0.724 



From Table II, we see that our algorithm is the winner 
nearly 70 percent of the time, on average, against the 
basic strategies. The lowest average win percentage for 
our algorithm is against the Average+5 opponent; 
however, it shows a win rate of 0.441, an improvement 
over the best of the nine basic strategies. This illustrates 
the merits of our algorithm over using the nine basic 
strategies alone. When compared to the average win 
percentage (column 2 of Table 1), we find that the average 
win percentage for our algorithm is a significant 
improvement [paired two-tailed t-test, t(8) = 3.5791, p = 
0.0072].  

 Figure 4. A simplified flow diagram of our model’s algorithm 
 
A flow diagram of our model’s algorithm is provided 

in Fig. 4. We begin by choosing the “easiest” opponent 
(call it Opponent 1) and determine which of the nine basic 
strategies they are using, while we play an Average+5 
strategy. The detection of the opponent’s strategy 
typically takes 3 to 5 rounds. We have three options: we 
can choose to lead, to lag, or to switch to the other 
opponent (Opponent 2) to evaluate. Once a strategy is 
chosen, it is periodically re- evaluated every n rounds. The 
value of n may be known (e.g., 10 for Stick10) or may 
vary depending on if our model remains the cumulative 
point leader.  

In these simulations, our model is the only one to use 
an algorithm to make strategy decisions, and is therefore 
not a true tournament. The Random strategy was 
determined to be the most difficult opponent for our 
algorithm to collude with, while the Stick strategy was the 
easiest. We observe a weak positive correlation between 
strategy collusion suitability with our model and overall 
win percentage, [r = 0.38, p = < 0.001, R2 = 0.148].  

V. EXPERIMENTS ON ADVANCED STRATEGIES 

We conducted two sets of experiments to test our 
algorithm. In the first, we examine its abilities against 
human players; in the second, we test it against some of 
the leading algorithms used in repeated symmetric three–
player constant–sum finite horizon games. 

For the first set of experiments, we hired human 
agents to play Tenspotter and serve as the two opponents 
of our algorithm. We test our algorithm with human 
opponents to examine its ability to adjust to tactics that do 
not follow any of our nine prescribed basic strategies. A 
total of 140 players were solicited using Amazon 
Mechanical Turk and paired at random to play a web-
based version of the game. Players were told in advance 

which of the opponents was human and which player was 
represented by our model. We paid crowdworkers $0.02 
to play the through a game of 100 rounds. To provide an 
additional incentive to the crowdworkers, we provided 
them an additional bonus of $0.05 if they won a game. An 
earlier empirical experiment using the same game showed 
that a small financial incentive improved player scores 
significantly [two-tailed t-test, t(138) = 22.16, p < 0.001]. 
We only offered compensation for the first game; 
however, nearly 31 percent of players played additional 
games with no expectation of compensation2 , 
demonstrating the enjoyment factor of the game. In 300 
games, human players won 16 percent of the time, which 
was significantly different than random, [χ2 (4, N = 300) = 
60.06, p < 0.001]. Thus, our algorithm demonstrated its 
ability to handle opponents that did not follow one of the 
nine basic strategies. 

Examining data from games that our algorithm did not 
win provided some interesting insights. First, despite no 
ability to verbally communicate with each other, nearly all 
winning human players were able to successfully collude 
with the other human opponent and exploit our model. 
Our model was unable to intervene if that collusion 
occurred. In order to win, we observe that the collusion 
needed to be established early in the game – successful 
human players demonstrated this action within the first 15 
rounds, with the highest game scorers establishing this 
action within 7 rounds. No human player was consistently 
able to collude against our model, although some human 
players were able to do so a majority of the time, despite 
being paired with different human opponents each time.  

Finding the right opponent for collusion and sticking 
with that opponent paid off – humans who tried to collude 
with the other human opponent and then switched to 
collude with our algorithm (or vice versa) were rarely 
successful. Second, many players appeared to play with 
no preset strategy, mimicking the random approach – a 
difficult strategy for our algorithms to handle. Our 
algorithm has only a slightly better than even chance of 
success against random approaches. 

The second experiment approximated two successful 
LG algorithms described in the literature. These 
algorithms are modified for use with Tenspotter. The first 
algorithm (EA2) by Sykulsi et. al. [13], involved the 
winner of the initial LG tournament. The second 
algorithm, described by Wunder et. al. [14], uses a 
Parameterized  Interactive  Partially  Observable  Markov  
Decision Process (PI-POMDP) approach. We chose these 
algorithms because they have been successful against 
other opponents and are described in sufficient detail to 
apply to Tenspotter. We adjusted them slightly for the 
differences in the number of spots available for play in 
Tenspotter as well as for the difference in scoring 
methods. We conducted a tournament of 60 games using 
the three agents (EA2, PI-POMDP, and our algorithm). 
These results, reported in Table III, are significantly 
different than random, [χ2 (4, N = 60) = 36.8, p < 0.001]. 
Examining Table III, we see that the mean number of 
points per game for each algorithm is significantly 
different at the p=0.05 level [F(2, 176) = 22.86, p< 0.001]. 

                                                           
2 In the additional games played without compensation, each 

player was still eligible for the bonus if they won. 



TABLE III.  THE WIN PERCENTAGE FOR EACH OF THE THREE MOST 
COMMONLY PLAYED STRATEGIES AGAINST THE AVERAGE+5 STRATEGY. 

Algorithm 
Avg. utility  
earned per 

game 

# of 1st 
place 

finishes 

# of 2nd 
place 

finishes 

# of 3rd 
place 

finishes 
Our model 358.0 36 13 11 

PI-POMDP 332.1 18 24 18 
EA2 309.9 6 23 31 

 
Post-hoc analysis using a Sidak test [11] indicated that our 
algorithm significantly outperformed the other two 
algorithms. Overall, our algorithm is able to win 36 of the 
60 games of the tournament. The EA2 algorithm is trained 
to classify its opponents by their proximity to playing 
either a Stick or Follow strategy, determined on their 
previous actions, manifested in a weighting factor. 
Because our algorithm adapts based on previous actions, a 
strong pattern of Stick or Follow is rarely observed. The 
EA2 algorithm is therefore rarely able to achieve 
meaningful weights for its parameters in response to our 
model. The EA2 default for poor weighting is to initiate a 
stick approach; in this scenario, our algorithm will move 
to the other opponent; likewise, EA2, our model chooses 
actions that demonstrate low stick and follow indices, and 
will be ignored by EA2 as a collaborative partner. 

The PI-POMDP algorithm [4] uses techniques similar 
to our own model; specifically, it takes a cognitive 
hierarchy approach, allowing for a distribution of agent 
types to represent each level of complexity. Thus, it can 
lead to multiple best responses, leaving a challenge for it 
to choose from among the most appropriate responses. 
One observed weakness in the PI-POMDP algorithm is 
that the set of included opponent policies is not clearly 
specified and therefore the solution breaks down when it 
encounters an unfamiliar policy or strategy. PI-POIMP 
mitigates this by working with a range of solutions. 
However, with our model, we can lead with one of nine 
strategies, six of which are not matched by PI-POIMP, 
exploiting this weakness.  

In each of the six games our advanced algorithm did 
not win, opponents chose to collude with each other. This 
points out a weakness of our model – it does not try to 
“steal away” one of the two opponents when they are in 
the process of collaborating. We note that our model is 
built upon recognizing strategy changes in our opponents. 
Since opposing algorithms categorize each of their 
opponents in one of two basic categories (either ‘collude’ 
or ‘exploit’), our algorithm can easily take advantage of 
this subtle flaw. However, as more sophisticated 
algorithms are introduced, our model will need to adapt to 
the additional sophistication they present. 

VI.   CONCLUSION 

This paper has introduced a repeated multi-agent 
constant sum game called Tenspotter, and has described 
how this game varies from other established repeated 
games. We also described nine basic strategies, which 
were either previously used in other algorithms or 
empirically determined have value in repeated games. We 
used the crowd to tune these nine basic strategies to 
develop an algorithm specifically designed for collusion 
in repeated games. Our algorithm was tested against each 
of the nine basic strategies, and demonstrated it could be 

successful a large majority of the time. We then tested it 
against human players and against two algorithms that 
showed the ability to win in other repeated multi-agent 
game tournaments. Against human players, our model was 
successful 84% of the time; against the two algorithms, 
we were able win in 60% of the games. Therefore, we see 
considerable promise for our algorithm. 

In future work, we anticipate using human 
computation methods once again to examine how to steal 
collusion partner in the process of forming with the other 
opponent. We will look at how to realign our collusion 
strategy to initiate simultaneous collaboration with both 
opponents. We also plan to categorize opponent moves 
into meta-strategies. We are aware that other multi-agent 
researchers are also improving their algorithms as well. 
This is an ‘arms race’ that we believe will lead to overall 
improvements in autonomous multi-agent efficiency. 

REFERENCES 
[1] Andreoni, J. and Miller, J. H. Rational cooperation in the finitely 

repeated prisoner's dilemma: Experimental evidence. The economic 
journal, vol 103 issue 418, 1993, pp. 570-585. 

[2] Axelrod, R. and Hamilton, W. D. The evolution of cooperation. 
Science, vol 211, issue 4489, 1981, pp 1390-1404. 

[3] Boyd, R. and Lorberbaum, J. P. No pure strategy is evolutionarily 
stable in the repeated Prisoner's Dilemma game, Nature 327, pp. 
58-59 (07 May 1987); doi:10.1038/327058a0. 

[4] Gmytrasiewicz, P. and Doshi, P. A framework for sequential 
planning in multiagent settings. Journal of Artificial Intelligence 
Research, vol 24, issue 1, 2005, pp. 49-79 

[5] Hotelling, H. Stability in competition. The economic journal, vol. 
39, issue 153, 1929, pp. 41-57 

[6] Jennings, N. R., Faratin, P., Lomuscio, A. R., Parsons, S., 
Wooldridge, M. J. and Sierra, C. Automated negotiation: prospects, 
methods and challenges. Group Decision and Negotiation, vol 10, 
issue 2, 2001, pp. 199-215. 

[7] Lin, H. and Sunder, S. Using experimental data to model 
bargaining behavior in ultimatum games. Experimental Business 
Research. Dordrecht: Kluwer, 2002. Working paper, Available at: 
http://www.som.yale.edu/Faculty/sunder/research.html 

[8] Littman, M. and Stone, P. Implicit negotiation in repeated games. 
Intelligent Agents VIII, 2002, pp. 393-404 

[9] Nash, J. Non-cooperative games. The Annals of Mathematics, vol 
54, issue 2, 1951, pp. 286-295. 

[10] Reitter, D., Juvina, I., Stocco, A. and Lebiere, C. Resistance is 
futile: Winning lemonade market share through metacognitive 
reasoning in a three-agent cooperative game. In Procedings of 19th 
Conference of Behavior Representation in Modeling and 
Simulation (BRIMS), Charleston, SC, 2010. 

[11] Sidak, Z. Rectangular confidence regions for the means of 
multivariate normal distributions. Journal of the American 
Statistical Association, 1967, pp. 626-633 

[12] Slembeck, T. Reputations and fairness in bargaining-experimental 
evidence from a repeated ultimatum game with fixed opponents. 
Technical report, EconWPA (1999) Available at: 
http://ideas.repec.org/p/wpa/wuwpex/9905002.html. 

[13] Sykulski, A. M., Chapman, A., Munoz De Cote Flores Luna, J. E. 
and Jennings, N. EA^2: The Winning Strategy for the Inaugural 
Lemonade Game Tournament, 2010. 

[14] Wunder, M., Kaisers, M., Littman, M. and Yaros, J. R. A cognitive 
hierarchy model applied to the lemonade game, In AAAI Workshop 
on Interactive Decision Theory and Game Theory (IDTGT). 2010 

[15] Zinkevich, M. A., Bowling, M. and Wunder, M. The Lemonade 
Game competition: solving unsolvable games. SIGecom Exch., vol 
10, issue 1, 2011, pp. 35-38. 

 
  


