Developing a Repeated Multi-Agent Constant-Sum Gamalgorithm Using
Human Computation

Christopher G. Harris

Informatics Program

The University of lowa

lowa City, lowa USA
christopher-harris@uiowa.edu

Abstract— In repeated multi-agent constant-sum games, a new spot. After 100 days of summer (each day is
each player's objective is to maximize control ovear finite considered a round), the game is over. The tolliyor
set of resources. We |ntr0duceTenSp0tter, an easy-to-use each Vendor Of thls repeated game |S the Cumulatlm

publicly-available game designed to allow human pi@rs o ¢ the yilities of each round. The vendor with thegest
compete as agents against a machine algorithm. The total utility is considered the game’s winner.

algorithm learns play strategies from humans, redues them M h A lqorith h
to nine basic strategies, and uses this knowledge huild and any t _ree-agent negotlatlo_n a gorit ms, such as
adapt its collusion strategy. We use a tournamenifmat to those used in LG, work by coordinating a seriesofes

test our algorithm against human players as well aggainst ~ With one of the two opponents in an effort to exptbe
other established multi-agent algorithms taken fromthe third opponent. These algorithms often rely on tiging
literature. Through these tournament experiments, v and predicting each opponent’s strategy, determitiie
demonstrate how learning techniques adapted usinguman jdeal opponent for collusion, and exploiting theritfied
computation — information obtained from both humanand gpportunity. However, there are numerous potential
gsgn‘tﬂ%'lﬁ)‘ff o Cdaer;e;ct)n:xzuﬁeﬁﬁet:t(;bizxigpml?l?g;:r?t strategies involved with collusion attempts — soate
machine algorithms in tournament play. mutually compa‘_uble while some are not. We disauss
well-known multi-agent algorithms later in this gap

Keywords- intelligent agents; multi-agent games; constant-sum To illustrate and test these collusion attempts, we
games; Tenspotter; human computation; Android-based games ~ introduce Tenspotter, a multi-agent game designed to
examine how both human players and algorithms

I INTRODUCTION recognize collusive behavior and adapt. A scregnigho

shown in Fig. 1. Although easy to learn and play,
Tenspotter is a challenge to master: state-of-the art
algorithms fail when matched against even a simple

competing retailers located along a busy shoppirees ~ Strategy. Probability theory and Nash Equilibriunedry
each selling an identical product at a fixed priach dO not provide a single solution to this game [9].
retailer wants to maximize market share by drawtimg Overall scores Last round
largest number of customers. Assuming a uniform g seess Player1 turn il
distribution of customers along the street and ragsy P9 Seore: 8.0 P9 Score:5.0
that each customer will always choose the neatesp,s
Hotelling's law [5] predicts that a street with twhops
will optimally find both shops right next to eacther at
the same halfway point, each capturing the custsroar . Tens, Jotter
their respective side of the halfway point. Thuacte
retailer will serve half the market. With three phpthe
optimal (stable) situation is to find each stordoahtions
one-sixth, half-way, and five-sixth along the ldngff the
same street. Now consider how this balance migahgé eE
if the street was circular in shape or if storeakimns
could change frequently without the advanced kndgde
of the other retailers? Our contributions are as follows. First we introduc
The Lemonade Game (LG) is a tournament introducednd describ&enspotter, a three—player repeated constant—
by Zinkevichet. al. [15] in 2009 based on the game of thesum game available onlihe Second, we describe the
same name. The game scenario is set up as folloves. genesis of our algorithm from nine basic strategigsich
summer on a circular island and vendors decidettasa represent those discussed in the literature amidghr our
lemonade stand on the beach, which extends ardwend town empirical evaluation of human play. Third, vesstt
island’s perimeter. You compete with two other vansd our algorithm in two different experiments, eachtchad
In LG there are twelve possible lemonade stanctilmts against opponents with different playing styles and
around the island, arranged like a clock dial. Priee of characteristics: first, against human opponents and
lemonade is fixed for all vendors, and customeveggs second, against leading repeated multi-agent cotastam
visit the lemonade stand closest to them. Eachtnah algorithms. We evaluate our performance againgt.eac
vendors move simultaneously under the cover of riesk

to a new location. No costs are associated withimgoto 1 ayajlable for download at http://www.irgames.osgispotter/

The objective of a multi-agent, constant-sum gasne i
for players to coordinate a series of moves in ortde
control a finite set of resources. Take an examplavo

©)

Figure 1. TheéTenspotter game interface

I RELATED WORK

Using repeated games to examine normal-form (als
called constant-sum) decision models
considerable attention recently in fields such @sguter
science, economics and engineering, particularbabse
they provide insight into collusion between agenéach
employing different strategies - in an attempt taximize
utility. However, relatively little research hasdpedone
on the intersection of game-based normal-form dw@tis

making models and autonomous agents, except fdp

repeated games.

Although first described by Axelrod in [2], studies
involving the iterated prisoner's dilemma have bee
described extensively in the literature, (e.g.,3l), The
prisoner's dilemma competition differs from the
autonomous agent-based games, sucheaspotter, in a
few important ways. In a prisoner's dilemma comijuetj
the act of cooperation between agents is cleadgtitied.
Moreover, since most repeated prisoner’'s dilemnmaega
typically only involve two agents, the target of agent’s
cooperation is obvious.

There have been numerous studies that exami
repeated ultimatum games, (e.g., [7, 12]) and tegea
negotiation games, (e.g., [6, 8]). Each of thessliss
examines the underlying importance of two issues

own strategy based on this detection.
Perhaps the best-known repeated game involvin

autonomous agents is the Lemonade Game (LG), dffere

as annual tournament since 2009 [15]. Severalgizatits
have described the algorithms used in their appesgdn
[13], Sykulskiet. al. describe an algorithm they used to
defeat other algorithms in the initial LG challengdey
detect the best opponent to collude with basedvam t
conditions — “sticking” or “shadowing” the chosen
opponent. To detect the best partner for collustaeijr
algorithm compares the strategy of each opponetit wi
that of an “optimal” opponent. Wundet. al. [14] groups
the LG strategies into levels of complexity, anglegs a
cognitive hierarchy approach to examine how thesel$
might be exploited. Likewise, Reitteret. al.[10]
investigated three techniques: “stick”, “random”dan
“roll”, using a metacognitive approach. In eachtloése
three approaches, the authors illustrate portidntheir
algorithms, which we recreate later in this paper.

I1l. TENSPOTTER

Tenspotter is a repeated-sum game offered as an

Android application, designed to allow human play&r

has drawh"

referred to as a “sandwich” since Player 1 is saciled
Qetween the other two players and thus receives the
inimum possible score of 1. The other two playsam
a score of 4.5 points each. In the screenshots rshiow
Fig. 2 and 3, we use color shading for each spotth@
right of Fig. 2, all three players occupy the saspot
(spot 2). In this case, all receive an equal payd8.33
points. On the left of Fig. 3, Players 1 (blue) @¢red)
occupy spot 7 and Player 3 (green) occupies spotility

ip spots 4 and 9 are split 0.33/0.33/0.33 eaclgesthe
two spots are equidistant from all three playerd.G, the
utility is split differently: 0.25/0.25/0.50. On ghright of

nFig. 3, Players 1 and 2 occupy spot 4 and Player 3

occupies spot 9 — directly across the board froot 4pin
this case, utility is assigned in a 0.25/0.25/0ra@io,
similar to LG. Utility for each player in each raiiis in
the range (1, 5). Thus, a player's maximum utilisy
observed when we have a single player occupyingoa s
directly opposite the other two players, the fipkayer
receiving a utility of 5 while the two opponentscka
receive a utility of 2.5. The worst case is to hedwiched

nléetween two players (see Fig. 2, left), resultimg iutility

of 1 while the two opponents receive a utility ob €ach.
Stable competition occurs when all players achiave
minimum utility > 2.5.

9 ‘ Tensgotter 4
‘ddd
Figure 1. Tenspotter screenshots showing a “safdiwiove on the red

player (left); three players occupying the same apd therefore
equally dividing utility (right).

SS9

&S0

Figure 2. Tenspotter screenshots showing two ptaged and blue)
occupying the same spot, but not directly oppotite green player
(left); directly opposite the green player (right).

A. Basic Strategies

play as an agent against algorithms built on thesdhe nine basic strategies considered here arer dittsed

strategies. As the namienspotter implies, there are ten
spots that can occupied by three participating &gen
Agents independently select one of the ten spotsaih
round. Total utility for each round is 10 pointsdatan be
divided into fractional units, (shown in Fig. 2 afdas
partially-shaded spots). Scoring Trenspotter is done in
the following way. Spots occupied by one or moieypts
are split equally between each occupant. For
remaining unoccupied spots, we calculate the Eeahd
distance to each of the three player-occupied spots
assign one point to the nearest player (in the vdmze
the minimum distance is shared by more than ongepla
we divide the points equally between the playerh)s is

on commonly-used strategies found in previously-
described LG algorithms from the literature or are
strategies that demonstrated a compelling valueutiir
early empirical examination. The nine strategies as
follows.

Random — generates a random number in the range (0,9)
and occupies the corresponding spot until the rextd.

th&tick — uses Random for the first round, then “sticks”,

retains that same spot for the duration of the game
Stickl0 —similar to Stick, this strategy obtains a
randomly-assigned spot number in the initial rowmd
keeps the same spot for the next nine rounds. Begry

rounds thereafter, it randomly determines a new apd of rounds and that our third player, P3, randontigases
sticks for the subsequent nine rounds to play one of the nine basic strategies in eaahdo
Shadow — uses Random for the first round, Then, in We also notice some natural collaborations occur,
roundn (n > 1), it “shadows”, or moves to the same spotsuch as between Average and Average+5, and between
number of the cumulative point leader determinedhan Shadow and Shadow+5. There is no single-best gtrate
n-1th round. It repeats this action in every subsefjuereven the robust Average+5 strategy is defeatedgusin
round. This is the same as the successful TIT-FOR-TATMaximum strategy. Fortunately, many of the sucadssf
described by Axelrod in [2], but here the opponentLG algorithms, two of which we will consider latierthis
shadowed changes as the cumulative point leadegesa paper, focus on only three of these nine strategies
Shadow+5- similar to the Shadow strategy, but instead itRandom, Stick and Shadow.

moves directly across the board (i.e., 5 spots afrayn
the cumulative point leader.

Minimum - uses Random for the initial spot. In
subsequent rounds, it moves to the spot of the rogo
that earned thiowest number of points in the-1th round.

If >1 player received the lowest score, it randomly
determines which of the spots to occupy (the sisatdso
considers itself in the lowest-score evaluationyteNthat
unlike the shadow, which relies on themulative point
leader, this strategy examines the score each mlay
received in themmediately-preceding (n-1th) round only.

Maximum - takes the same approach as the Minimum

strategy, but instead uses the player with the mami
point score from the previous round.

Average— uses Random for the initial spot. In subsequen

rounds, it determines the average of the two oppmtshe
spot numbers from the immediately-precedinglih)
round and moves to that position, rounded up to th
nearest integer.

Average+5— similar to the Average strategy, but instead
moves to the spot directly across the board (iwe,spots
away) from the average of the two opponents’ lacetias
determined in the immediately precedimglfh) round.

TABLE 1. WIN PERCENTAGE FOR EACH BASIC STRATEGY PLAYED
ALONG WITH BEST AND WORST STRATEGIES PLAYED BY AN ORBNENT.

P1 P1 Best strategy for | Worst strategy for
strategy strategy | P2 (P2 win rate P2 (P2 win rate vs.
played win rate | vs. P1 strategy) P1 strategy)
Random 0.50¢ Shadow+5 (0.47t | Stick10 (0.173
Stick 0.25¢ Average+5 (0.76: | Minimum (0.073
Stick1Q 0.32¢ Average+5 (0.71: | Minimum (0.049
Shadow 0.26¢ Random (0.73¢ Maximum (0.067
Shadow+t 0.46¢ Shadow (0.51: Random (0.16¢
Minimum 0.131 Average+5 (0.85: | Average (0.14¢
Maximum 0.272 Average+5 (0.75: | Shadow (0.09°
Average 0.17¢ Average+5 (0.88: | Minimum (0.049
Average+t 0.59: Maximurr (0.349 Shadow+5 (0.10:

Table | shows the probability of winning, given yda

B. Advanced Strategies

Using information gained from 2.43 million
simulations and another 163,400 human participant
interactions with our nine basic strategies, weateean
algorithm to address the ordering of each strat€yy
algorithm is then refined through play against hnraad
other collusion-seeking algorithms, using the pholity
for a move in rounch based on the opponent locations in
roundn-1. To build this algorithm, we determine whether

Bur agent should lead or lag a targeted oppoheating

an opponent means a player's chosen move in round
will affect the targeted opponent’s location in mdun+1.
Lagging an opponent means that in roumave predict a
Largeted opponent’s move for rounél1l, and we move to
n optimal position in rouna+1 to exploit that opponent.
When we ardeading an opponent, as with Minimum,
Maximum, Average, Average+5 (and with Stick or

Btick10 if we are the cumulative point leader), wge the

information from the immediately-preceding round to
influence our move in the current round. With the@ow
and Shadow+5 strategies, if we are the current @atime
point leader in the game, we can perforfagapproach
and can therefore anticipate the opponents move
regardless of our current move. We can thereforeento
a spot that maximizes the points received for thaihd.

Few other algorithms stick to a single basic strate
throughout a game, but instead change frequenthy&pt
to the moves of its opponents. However, all aliong
play a strategy in every round — as we have discovered,
this is typically a Stick, Shadow or a Random siyst

IV. EXPERIMENT ONBASIC STRATEGIES

Agent algorithms often form complex models using
simple inputs as components. To address this, wWerpe
a second online simulation to determine which efine
basic strategies work best with leading, lagging, o
switching to another opponent. In this second satnom,
we conducted 24,300 games of 100 rounds each,

P1 and player P2 each choose one of the nine basigaiating our algorithm’s approach against every

strategies. This is based on simulation of 24,30ep of
100 rounds each (2.43 million rounds). Table | alsows
the best and worst strategy for player P2 to plggirest
player P1. From this we can make some key obsensti
First, the Average+5 strategy is the most robustireg
the other eight strategies with an overall longrterin

combination of basic strategies. We evaluatedtedtegy
combinations to determine a probabilistic value dach
of our approaches, which are summarized in Table Il

percentage of 0.593. However, should another play
aware that player P1 is playing the Average+5 eyt
decide to play the Maximum strategy, that secormyeqyl

has a 0.349 probability of winning — only slightbetter

than random (0.333). This winning percentage a@so

affected by the strategy chosen by the third plapet

here we assume a long-run evaluation over a langear

TABLE II. THE WIN PERCENTAGE FOR OUR ALGORITHM AGAINST
EACH OF THE NINE BASIC STRATEGIES

bpponent Our win rate Opponent Our win rate
strategy Vvs. opponent strategy VS. opponent
played strategy played | played strategy played
Average 0.85¢ Stick1C 0.70z
Minimum 0.841 Shadow-+t 0.56¢

Stick 0.76: Random 0.54]
Shadow 0.74¢ Average+t 0.441
Maximum 0.72¢

From Table I, we see that our algorithm is thenein which of the opponents was human and which plays w
nearly 70 percent of the time, on average, agdimst represented by our model. We paid crowdworkers 250.0
basic strategies. The lowest average win percerfiage to play the through a game of 100 rounds. To pewd
our algorithm is against the Average+5 opponentadditional incentive to the crowdworkers, we predd
however, it shows a win rate of 0.441, an improveime them an additional bonus of $0.05 if they won a gaAn
over the best of the nine basic strategies. Thistibtes earlier empirical experiment using the same ganoavet
the merits of our algorithm over using the nineibas that a small financial incentive improved playeorss
strategies alone. When compared to the average wsignificantly [two-tailed t-test, t(138) = 22.16,90.001].
percentage (column 2 of Table 1), we find thatdherage We only offered compensation for the first game;
win percentage for our algorithm is a significant however, nearly 31 percent of players played aalukii
improvement [paired two-tailed t-test, t(8) = 3.579 = games with no expectation of compensation
0.0072]. demonstrating the enjoyment factor of the game30a
games, human players won 16 percent of the timéghwh
was significantly different than randony?[(4, N = 300) =
60.06, p_< 0.001]. Thus, our algorithm demonstrated
—’[ZEEINSETETS)]‘— ability to handle opponents that did not follow avfethe

A nine basic strategies.

Examining data from games that our algorithm ditd no
win provided some interesting insights. First, diespo
ability to verbally communicate with each otherarig all
winning human players were able to successfulljudel
with the other human opponent and exploit our model
Our model was unable to intervene if that collusion
occurred. In order to win, we observe that theusidin

needed to be established early in the game — ssfotes
After n rounds human players demonstrated this action within itst £5
Figure 4. A simplified flow diagram of our modeédgorithm ;(::lillrg)(:ls\,lVI\tAI{:ItrT ;r;?)urr]ll(?:elflt) %?m% nsg?;)?é? Vs;;agg;g“g
able to collude against our model, although somma&
players were able to do so a majority of the tichespite
being paired with different human opponents eatie ti
Finding the right opponent for collusion and stiaki
ith that opponent paid off — humans who tried aiuzle
ith the other human opponent and then switched to
collude with our algorithm (or vice versa) were elgr
successful. Second, many players appeared to pliyy w
no preset strategy, mimicking the random approach —
difficult strategy for our algorithms to handle. Ou
algorithm has only a slightly better than even deaof
success against random approaches.
The second experiment approximated two successful

: L : LG algorithms described in the literature. These
an algorithm to make strategy decisions, and isetbes . o ; i
not a true tournament. The Random strategy Wa'gllgonthms are modified for use wiffenspotter. The first

determined to be the most difficult opponent forr ou algorithm (EA) by Sykulsiet. al. [13], involved the

algorithm to collude with, while the Stick strateggs the winner of the initial LG tournament. The second

easiest. We observe a weak positive correlatiowedsst glggﬁazrpe’rizdeej'c{ﬁ?grdacﬁzeV\él;?g:ﬁt' gbsgrf'/gu;‘:‘kesv a
strategy collusion suitability with our model andeaall y

win percentages[= 0.38,p = < 0.001 % = 0.148] Decision Process (PI-POMDP) approach. We chose thes
k TR = ' ' algorithms because they have been successful agains
V. EXPERIMENTS ONADVANCED STRATEGIES other opponents and are described in sufficiendild&d
apply to Tenspotter. We adjusted them slightly for the
bifferences in the number of spots available faypin
Tenspotter as well as for the difference in scoring
the leading alaorithms used in repeated svmmeiriest- methods. We conducted a tournament of 60 games usin
I gt gt— finite hori P Y the three agents (EAPI-POMDP, and our algorithm).
player cor:\s ?_n sum |nf|e orizon games. hired h These results, reported in Table Ill, are signiftba
For the first set of experiments, we hire UMan e et than randomy((4, N = 60) = 36.8, p < 0.001].
agents to plaffenspotter and serve as the two OpponentsExamining Table Ill, we see that the mean number of

of our algorithm. We test our algorithm with human ~~. : L

o o . oints per game for each algorithm is significantl
opponents to examine its ability to adjust to tazct_hat do giﬁerentpat thge 0=0.05 level [F(2 9176) - 2288 3)001] y
not follow any of our nine prescribed basic stregegA ' ' = :

total of 140 players were solicited using Amazon

Mechanical Turk and paired at random to play a webz | the additional games played without compensatieach
based version of the game. Players were told irarck/ player was still eligible for the bonus if they won

BEGIN: Choose “easiest” opponent
(Opponent 1)
2

min, max, average,
average+5

shadow,
shadow+5

| random

| | stick, stick10

Evaluate
other
opponent

A flow diagram of our model’s algorithm is provided
in Fig. 4. We begin by choosing the “easiest” omun
(call it Opponent 1) and determine which of theenirasic
strategies they are using, while we play an Avet&ge
strategy. The detection of the opponent’s strateg)zz
typically takes 3 to 5 rounds. We have three opstiame
can choose to lead, to lag, or to switch to theeoth
opponent (Opponent 2) to evaluate. Once a straiegy
chosen, it is periodically re- evaluated evempunds. The
value ofn may be known (e.g., 10 for Stick10) or may
vary depending on if our model remains the cunmwaati
point leader.

In these simulations, our model is the only oneite

algorithm. In the first, we examine its abilitiegadnst
human players; in the second, we test it againstesof

TABLE Il

THE WIN PERCENTAGE FOR EACH OF THE THREE MOST
COMMONLY PLAYED STRATEGIES AGAINST THEAVERAGE+5S STRATEGY.

Avg. utility # of 1sl # of 2nd # of 3rd
Algorithm earned per place place place
game finishes finishes finishes
Our mode 358.(36 13 11
PI-POMDF 332.1 18 24 18
EA® 309.¢ 6 23 31

successful a large majority of the time. We theste it
against human players and against two algorithnas th
showed the ability to win in other repeated mudjeat
game tournaments. Against human players, our meds|
successful 84% of the time; against the two alpord,
we were able win in 60% of the games. Thereforesee
considerable promise for our algorithm.

In future work, we anticipate using human
computation methods once again to examine howeial st

Post-hoc analysis using a Sidak test [11] indic#ted our

collusion partner in the process of forming witle thither

algorithm significantly outperformed the other two opponent. We will look at how to realign our coltus

algorithms. Overall, our algorithm is able to wié 8f the
60 games of the tournament. The’B#gorithm is trained
to classify its opponents by their proximity to yileg
either a Stick or Follow strategy, determined omirth
previous actions, manifested
Because our algorithm adapts based on previousnacih
strong pattern of Stick or Follow is rarely obsetv&he
EA? algorithm is therefore rarely able to achieve
meaningful weights for its parameters in respolmseur [
model. The EAdefault for poor weighting is to initiate a
stick approach; in this scenario, our algorithml wibve
to the other opponent; likewise, EAour model chooses [2]
actions that demonstrate low stick and follow iedicand
will be ignored by EAas a collaborative partner. Bl
The PI-POMDP algorithm [4] uses techniques similar
to our own model; specifically, it takes a cogrétiv [4
hierarchy approach, allowing for a distribution ajent
types to represent each level of complexity. Thiusan
lead to multiple best responses, leaving a chadldogit [5]
to choose from among the most appropriate responses
One observed weakness in the PI-POMDP algorithm i
that the set of included opponent policies is ety
specified and therefore the solution breaks dowerwif
encounters an unfamiliar policy or strategy. PI-M@I [7]
mitigates this by working with a range of solutions
However, with our model, we can lead with one afeni
strategies, six of which are not matched by PI-PBIM g
exploiting this weakness. (8]
In each of the six games our advanced algorithm di%]
not win, opponents chose to collude with each othkis
points out a weakness of our model — it does notdr
“steal away” one of the two opponents when theyiare
the process of collaborating. We note that our rhigle
built upon recognizing strategy changes in our ojgds.
Since opposing algorithms categorize each of thei
opponents in one of two basic categories (eithelfude’
or ‘exploit’), our algorithm can easily take advage of
this subtle flaw. However, as more sophisticatedi12]
algorithms are introduced, our model will need daat to
the additional sophistication they present.

[10]

f11]

VI. CONCLUSION (13]

This paper has introduced a repeated multi-agent
constant sum game call@inspotter, and has described [14]
how this game varies from other established repeate
games. We also described nine basic strategiehwhi
were either previously used in other algorithms ortt]
empirically determined have value in repeated gamé&s
used the crowd to tune these nine basic stratetgies
develop an algorithm specifically designed for gsibn
in repeated games. Our algorithm was tested agaatst
of the nine basic strategies, and demonstrateduiidcbe

strategy to initiate simultaneous collaborationhwitoth
opponents. We also plan to categorize opponent snove
into meta-strategies. We are aware that other raghint
researchers are also improving their algorithmsves.
in a weighting factor.This is an ‘arms race’ that we believe will leadoierall
improvements in autonomous multi-agent efficiency.

REFERENCES

Andreoni, J. and Miller, J. H. Rational cooperatianthe finitely
repeated prisoner's dilemma: Experimental evideftweeconomic
journal, vol 103 issue 418, 1993, pp. 570-585.

Axelrod, R. and Hamilton, W. D. The evolution ofoperation.
Science, vol 211, issue 4489, 1981, pp 1390-1404.

Boyd, R. and Lorberbaum, J. P. No pure strategv@utionarily
stable in the repeated Prisoner's Dilemma gaxa&yre 327, pp.
58-59 (07 May 1987); doi:10.1038/327058a0.

Gmytrasiewicz, P. and Doshi, P. A framework for s=ttial
planning in multiagent settingsournal of Artificial Intelligence
Research, vol 24, issue 1, 2005, pp. 49-79

Hotelling, H. Stability in competitionThe economic journal, vol.
39, issue 153, 1929, pp. 41-57

Jennings, N. R., Faratin, P., Lomuscio, A. R., &ass S.,
Wooldridge, M. J. and Sierra, C. Automated negiotmatprospects,
methods and challengeSroup Decision and Negotiation, vol 10,

issue 2, 2001, pp. 199-215.

Lin, H. and Sunder, S. Using experimental data todeh
bargaining behavior in ultimatum gamesperimental Business
Research. Dordrecht: Kluwer, 2002. Working paper, Available at:
http://www.som.yale.edu/Faculty/sunder/research.htm

Littman, M. and Stone, P. Implicit negotiation epeated games.
Intelligent Agents VIII, 2002, pp. 393-404

Nash, J. Non-cooperative gamé&se Annals of Mathematics, vol
54, issue 2, 1951, pp. 286-295.

Reitter, D., Juvina, |., Stocco, A. and Lebiere, Resistance is
futile: Winning lemonade market share through megadive

reasoning in a three-agent cooperative gamérdaedings of 19"

Conference of Behavior Representation in Modeling and

Smulation (BRIMS), Charleston, SC, 2010.

Sidak, Z. Rectangular confidence regions for theamse of
multivariate normal distributions.Journal of the American
Statistical Association, 1967, pp. 626-633

Slembeck, T. Reputations and fairness in bargaiekpgerimental
evidence from a repeated ultimatum game with fispgonents.
Technical report, EconWPA (1999) Available at:
http://ideas.repec.org/p/wpa/wuwpex/9905002.html

Sykulski, A. M., Chapman, A., Munoz De Cote Flotesa, J. E.
and Jennings, N. EA*2: The Winning Strategy for thaugural
Lemonade Game Tournament, 2010.

Wunder, M., Kaisers, M., Littman, M. and YarosRJA cognitive
hierarchy model applied to the lemonade game, In AAAI Workshop
on Interactive Decision Theory and Game Theory (IDTGT). 2010
Zinkevich, M. A., Bowling, M. and Wunder, M. The ®nade
Game competition: solving unsolvable gam@&ecom Exch., vol
10, issue 1, 2011, pp. 35-38.

