
Racket Assignment #4: Lambda and Basic Lisp
Written by David Hennigan

Learning Abstract

This assignment introduced creating lambda functions in Racket and helped develop basic Lisp skills.

Task 1 - Lambda

Task 1a – Three ascending integers

Task 1b – Make list in reverse order

Task 1c – Random number generator

Task 2 – List Processing Referencers and Constructors

Task 3 – The Sampler Program

demo

code

#lang racket

(define (sampler)

 (display "(?): ")

 (define the-list (read))

 (define the-element

 (list-ref the-list (random (length the-list)))

)

 (display the-element) (display "\n")

 (sampler)

)

Task 4 – The Card Playing Example

demo

code

#lang racket

(define (ranks rank)

 (list

 (list rank 'C)

 (list rank 'D)

 (list rank 'H)

 (list rank 'S)

)

)

(define (deck)

 (append

 (ranks 2)

 (ranks 3)

 (ranks 4)

 (ranks 5)

 (ranks 6)

 (ranks 7)

 (ranks 8)

 (ranks 9)

 (ranks 'X)

 (ranks 'J)

 (ranks 'Q)

 (ranks 'K)

 (ranks 'A)

)

)

(define (pick-a-card)

 (define cards (deck))

 (list-ref cards (random (length cards)))

)

(define (show card)

 (display (rank card))

 (display (suit card))

)

(define (rank card)

 (car card)

)

(define (suit card)

 (cadr card)

)

(define (red? card)

 (or

 (equal? (suit card) 'D)

 (equal? (suit card) 'H)

)

)

(define (black? card)

 (not (red? card))

)

(define (aces? card1 card2)

 (and

 (equal? (rank card1) 'A)

 (equal? (rank card2) 'A)

)

)

