
#### **Introductory Visualizing Technology**

Seventh Edition

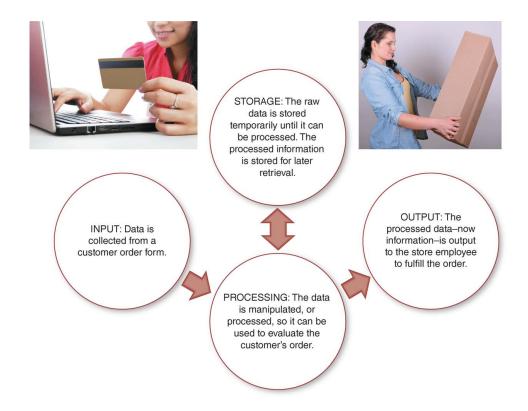


#### **Chapter 1**

What Is a Computer?



#### **Explain the Functions of a Computer**


Computers are programmable machines that convert raw data into useful information

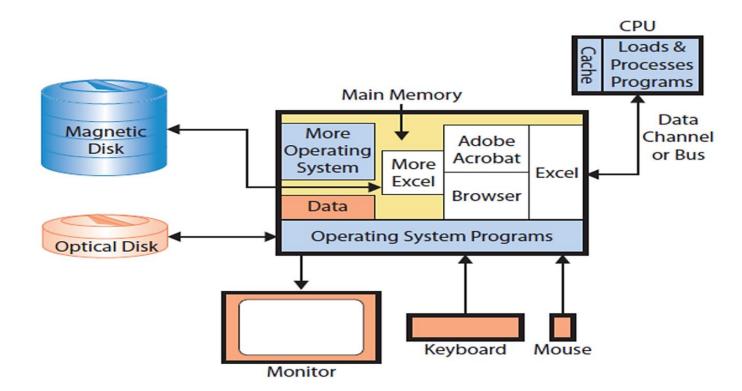




#### **The Information Processing Cycle**

 The information processing cycle converts data collected from a customer order form into information used to fulfill the order.






# Describe the Evolution of Computer Hardware





#### **How Does a Computer Work?**



Copyright © 2015 Pearson Education, Inc.



#### **Functions of the CPU**

- Central Processing Unit (CPU or processor):
  - Brain of the computer
  - Housed on the motherboard (main circuit board of a computer)
  - Contains two parts
    - ✓ Arithmetic Logic Unit (ALU):
      - Performs arithmetic and logic (AND, OR, and NOT) calculations
    - ✓ Control Unit: Manages data movement through the CPU
  - Together these two units:
    - ✓ Execute instructions (control unit)
    - ✓ Perform calculations (ALU)
    - √ Make decisions (control unit)



#### **First-Generation Computers**

- Used vacuum tubes
  - Resembled incandescent light bulbs
  - Emitted a lot of heat
  - Unreliable
- Massive in size
- Used manual switches to process data



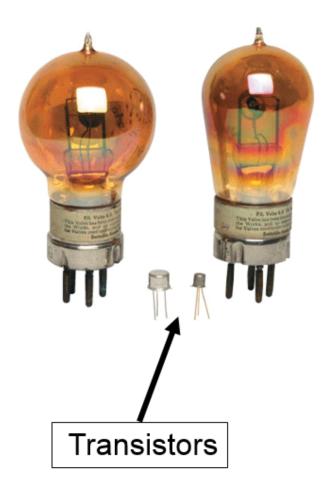


# First-Generation Computers (2 of 3)

#### **Table 1.1** Important First-Generation Computers

| Date      | Computer                             | Origin           | Creator                                                                           | Description                                                                                                                                                                                                 |
|-----------|--------------------------------------|------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1936–1941 | Z1–Z3                                | Germany          | Konrad Zuse                                                                       | The Z1 through Z3 were mechanical, programmable computers. Working in isolation in Germany, Konrad Zuse didn't receive the support of the Nazi government, and his computers were destroyed during the war. |
| 1942      | Atanasoff–Berry<br>Computer<br>(ABC) | United<br>States | Professor John Atanasoff and graduate student Clifford Berry at Iowa StateCollege | The ABC was never fully functional, but Atanasoff won a patent dispute against John Mauchly (ENIAC), and Atanasoff was declared the inventor of the electronic digital computer.                            |

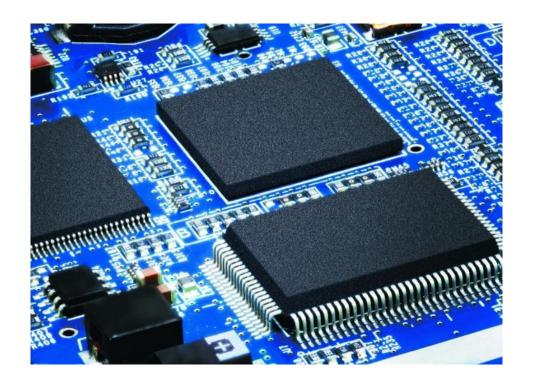



# First-Generation Computers (3 of 3)

| Date | Computer       | Origin            | Creator                                                                       | Description                                                                                                                                 |
|------|----------------|-------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 1944 | Colossus       | United<br>Kingdom | Tommy Flowers                                                                 | Used by code-breakers to translate encrypted German messages, these computers were destroyed after the war and kept secret until the 1970s. |
| 1944 | Harvard Mark 1 | United<br>States  | Designed by Howard Aiken and programmed by Grace Hopper at Harvard University | The Mark 1 was used by the U.S. Navy for gunnery and ballistic calculations until 1959.                                                     |
| 1946 | ENIAC          | United<br>States  | Presper Eckert and<br>John Mauchly at the<br>University of<br>Pennsylvania    | ENIAC was the first working, digital, general-purpose computer.                                                                             |
| 1951 | UNIVAC         | United<br>States  | Eckert/Mauchly                                                                | The world's first commercially available computer, UNIVAC was famous for predicting the outcome of the 1952 presidential election.          |



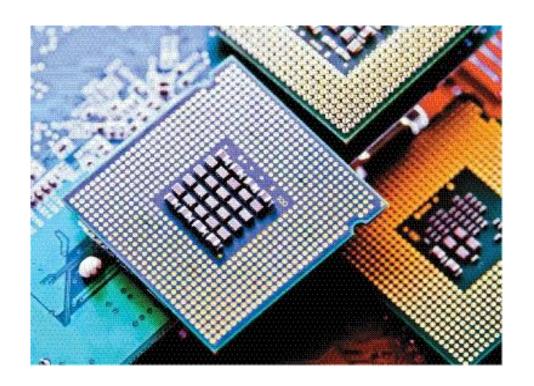
#### **Second-Generation Computers**


- Transistors replaced vacuum tubes in 1947
  - Revolutionized the electronics industry
- More powerful
- Smaller
- More reliable
- Reprogrammed in less time





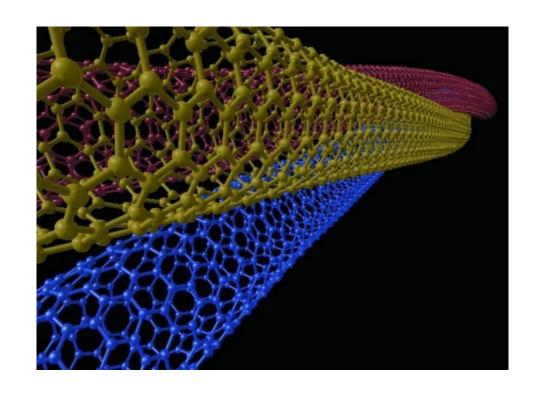
#### **Third-Generation Computers**


- Integrated circuits
  - Developed in the 1960s
  - Contained many tiny transistors on semiconducting material (silicon)
- Faster, smaller, and more reliable



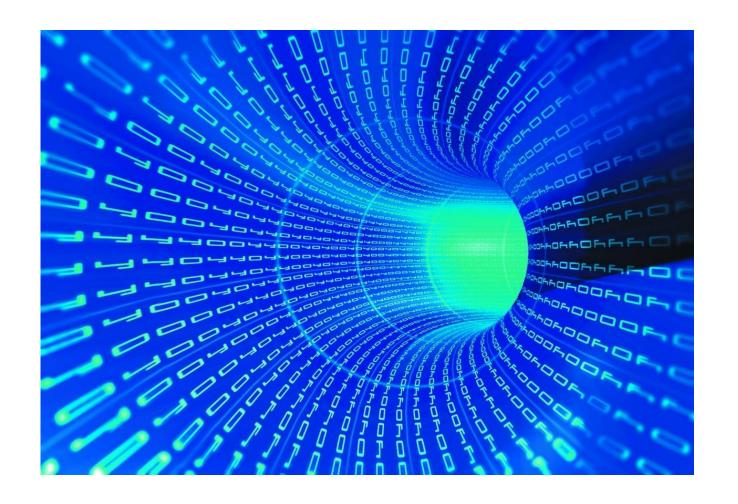


#### **Fourth-Generation Computers**


- Microprocessors
  - Emerged in 1970s
  - Complex integrated circuits that contain the central processing unit (CPU), the brain of a computer
  - First microprocessor was as powerful as the ENIAC



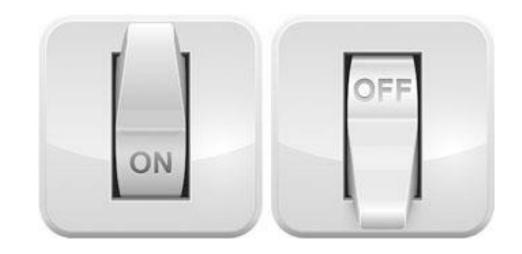



#### Moore's Law

- Gordon Moore
  - Made prediction in1965
  - Number of transistors on an integrated circuit doubled every 2 years
  - Prediction of continued exponential growth
  - Current trend is closer to 18 months
  - Affects processing speeds and storage capacity of modern electronic devices






#### **How Computers Represent Data Using Binary Code**





#### Binary Number System: 1s & 0s

- Binary code has two possible states: on/off, 1/0, yes/no
- Bit—the smallest unit of digital information 8 bits = 1 byte
- With two bits, there are four possible combinations of states (10, 01, 11, 00)



## **Binary Code**

- ASCII—uses 7 bits and represents 128 characters
  - With 8 bits, there are 256 different possible combinations  $2^8 = 256$
- Unicode—extended ACSII; represents more than 100,000 characters

#### **Bits and Bit Patterns**

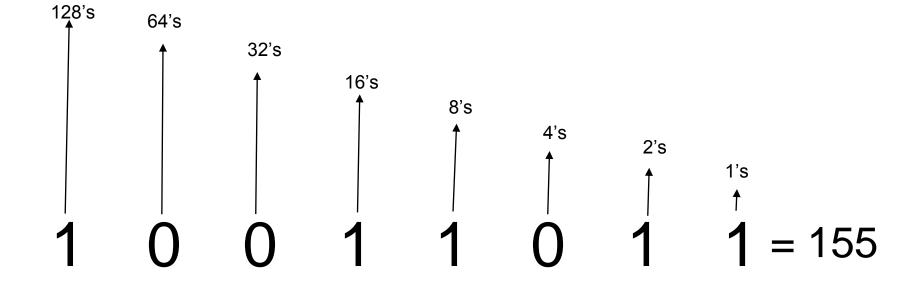
- Bit: Binary digit (0 or 1)
- Bit Patterns are used to represent information.
  - Numbers
  - Text characters
  - Images
  - Sound
  - And others



#### The Binary System

The traditional decimal system is based on powers of ten.

The Binary system is based on powers of two.




#### **Binary Numbers**

1 0 0 1 1 0 1 1



#### **Binary Numbers**



This is an 8 bit system (Yours is probably 64!)



#### **Representing Text**

- Each character (letter, punctuation, etc.) is assigned a unique bit pattern.
  - ASCII: Uses patterns of 7-bits to represent most symbols used in written English text
  - ISO developed a number of 8 bit extensions to ASCII, each designed to accommodate a major language group
  - Unicode: Uses patterns of 16-bits to represent the major symbols used in languages world wide



| Dec | Нх | Oct | Chai | r                        | Dec | Нх | Oct | Html          | Chr   | Dec | Нх | Oct | Html           | Chr | Dec | Нх | Oct | Html Cl       | <u>nr</u> |
|-----|----|-----|------|--------------------------|-----|----|-----|---------------|-------|-----|----|-----|----------------|-----|-----|----|-----|---------------|-----------|
| 0   | 0  | 000 | NUL  | (null)                   | 32  | 20 | 040 | 6#32;         | Space | 64  | 40 | 100 | a#64;          | 0   | 96  | 60 | 140 | <b>`</b>      | 8         |
| 1   | 1  | 001 | SOH  | (start of heading)       | 33  | 21 | 041 | <b>@#33;</b>  | 1     | 65  | 41 | 101 | A              | A   | 97  | 61 | 141 | <u>@</u> #97; | a         |
| 2   | 2  | 002 | STX  | (start of text)          | 34  | 22 | 042 | <u>@</u> #34; | rr .  | 66  | 42 | 102 | B              | В   | 98  | 62 | 142 | @#98;         | b         |
| 3   |    |     |      | (end of text)            | 35  | 23 | 043 | @#35;         | #     | 67  | 43 | 103 | C              | С   | 99  | 63 | 143 | c             | C         |
| 4   | 4  | 004 | EOT  | (end of transmission)    | 36  | 24 | 044 | <b>\$</b>     | ş     | 68  | 44 | 104 | D              | D   | 100 | 64 | 144 | d             | d         |
| 5   | 5  | 005 | ENQ  | (enquiry)                | 37  |    |     | <u>@#37;</u>  |       | 69  |    |     | E              |     |     |    |     | e             |           |
| 6   |    |     |      | (acknowledge)            |     |    |     | <b>&amp;</b>  |       | 70  |    |     | F              |     |     |    |     | f             |           |
| 7   |    |     |      | (bell)                   | 39  |    |     | <b>%#39;</b>  |       | 71  |    |     | G              |     |     |    |     | @#103;        |           |
| 8   |    | 010 |      | (backspace)              | 40  |    |     | a#40;         |       | 72  |    |     | H              |     |     |    |     | <b>4</b> ;    |           |
| 9   |    |     | TAB  |                          | ı   |    |     | a#41;         |       | 73  |    |     | a#73;          |     |     |    |     | i             |           |
| 10  |    | 012 |      | (NL line feed, new line) | ı   |    |     | 6#42;         |       |     |    |     | a#74;          |     |     |    |     | j             |           |
| 11  |    | 013 |      | (vertical tab)           |     |    |     | a#43;         |       | 75  |    |     | a#75;          |     |     |    |     | k             |           |
| 12  |    | 014 |      | (NP form feed, new page) |     |    |     | a#44;         |       |     |    |     | a#76;          |     |     |    |     | l             |           |
| 13  |    | 015 |      | (carriage return)        |     |    |     | <u>445;</u>   |       | 77  |    |     | M              |     |     |    |     | m             |           |
| 14  |    | 016 |      | (shift out)              |     |    |     | a#46;         |       |     |    |     | a#78;          |     | ı   |    |     | n             |           |
| 15  |    | 017 |      | (shift in)               |     |    |     | a#47;         |       | 79  |    |     | a#79;          |     |     |    |     | o             |           |
|     |    |     | DLE  | 1                        |     |    |     | a#48;         |       | 80  |    |     | 4#80;          |     |     |    |     | p             |           |
|     |    |     |      | (device control 1)       |     |    |     | a#49;         |       | 81  |    |     | Q              |     |     |    |     | q             |           |
|     |    |     | DC2  | (device control 2)       |     |    |     | <b>%#50;</b>  |       |     |    |     | R              |     |     |    |     | r             |           |
|     |    |     | DC3  | (device control 3)       |     |    |     | 3             |       |     |    |     | S              |     |     |    |     | s             |           |
|     |    |     |      | (device control 4)       |     |    |     | 4             |       |     |    |     | 4#8 <b>4</b> ; |     |     |    |     | t             |           |
|     |    |     |      | (negative acknowledge)   |     |    |     | 5             |       |     |    |     | U              |     |     |    |     | u             |           |
|     |    |     |      | (synchronous idle)       |     |    |     | a#54;         |       |     |    |     | V              |     |     |    |     | v             |           |
|     |    |     |      | (end of trans. block)    |     |    |     | <b>6#55</b> ; |       |     |    |     | a#87;          |     |     |    |     | w             |           |
|     |    |     | CAN  | (cancel)                 |     |    |     | a#56;         |       | 88  |    |     | X              |     |     |    |     | x             |           |
|     |    | 031 |      | (end of medium)          |     |    |     | <u>6</u> #57; |       | 89  |    |     | Y              |     |     |    |     | y             |           |
|     |    |     | SUB  | (substitute)             |     |    |     | a#58;         |       | 90  |    |     | Z              |     |     |    |     | z             |           |
|     |    |     | ESC  |                          | 59  |    |     | a#59;         |       | 91  |    |     | [              | -   |     |    |     | {             |           |
|     |    | 034 |      | (file separator)         |     |    |     | <             |       |     |    |     | @#92;          |     |     |    |     | <b>4</b> ;    |           |
|     |    | 035 |      | (group separator)        |     |    |     | =             |       |     |    |     | ]              | -   |     |    |     | }             |           |
|     |    | 036 |      | (record separator)       |     |    |     | >             |       |     |    |     | ^              |     |     |    |     | ~             |           |
| 31  | 1F | 037 | បន   | (unit separator)         | 63  | 3F | 077 | <b>?</b>      | ?     | 95  | 5F | 137 | 6#95;          | _   | 127 |    |     |               | DEL       |

Source: www.LookupTables.com



# The message "Hello." in ASCII

| 01001000 | 01100101 | 01101100 | 01101100 | 01101111 | 00101110 |
|----------|----------|----------|----------|----------|----------|
| H        | е        | 1        |          | 0        |          |

#### **Representing Numeric Values**

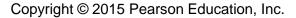
- Binary notation: Uses bits to represent a number in base two
- Limitations of computer representations of numeric values
  - Overflow: occurs when a value is too big to be represented
  - Truncation: occurs when a value cannot be represented accurately



# Why Does a Business Professional Care How a Computer Works?

- Simple tasks do not need fast CPU.
- 64-bit dual processor, 8+GB RAM for large, complicated spreadsheets, large database files, large picture, sound, movie files.
- Cache and main memory are volatile, so system or you need to save frequently.

#### **Measuring Data**


- Bits measure data transfer rates
- Bytes measure file size and storage capacity





# **Important Storage Capacity Terminology**

| Term     | Definition                                     | Abbreviation |
|----------|------------------------------------------------|--------------|
| Byte     | Number of bits to represent one character      |              |
| Kilobyte | 1,024 bytes                                    | K            |
| Megabyte | 1,024 K = 1,048,576 bytes                      | MB           |
| Gigabyte | 1,024 MB = 1,073,741,824 bytes                 | GB           |
| Terabyte | 1,024 GB = 1,099,511,627,776 bytes             | TB           |
| Petabyte | 1,024 TB = 1,125,899,906,842,624 bytes         | PB           |
| Exabyte  | 1,024 PB = 1,152,921,504,606,846,976 bytes     | EB           |
| Zetabyte | 1,024 EB = 1,180,591,620,717,411,303,424 bytes | ZB           |



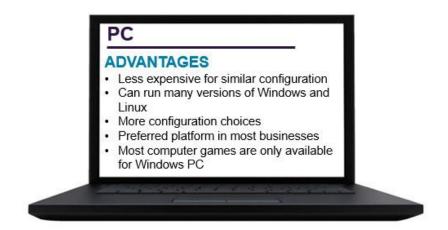


# **List the Various Types and Characteristics of Personal Computers**

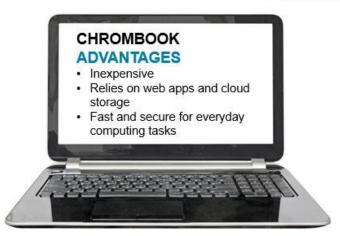


#### **Desktop Computers**

- Desktop computer
- Workstation
- All-in-one computer

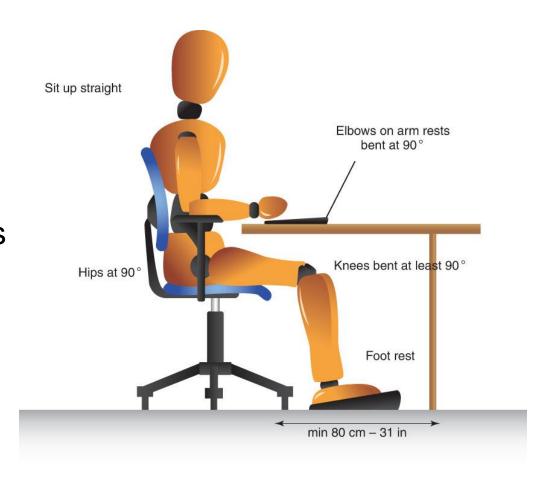



#### **Notebook Computers**


- Portable personal computers
  - May use a stylus (a digital pen)
- Convertible notebook
  - Has swivel screen
- Tablet
  - Preinstalled mobile apps



#### Mac, PC, or Something Else?








#### **Ergonomics**

- Ergonomic (proper) workspace
  - Proper posture
  - Use a foot rest
  - Elbows on arm rest bent at 90 degrees
  - Monitor below eye level
  - Frequent breaks





#### **Ergonomics**

- Improper workspace
  - Can affect health, comfort, and productivity
  - Leads to discomfort and can result in musculoskeletal disorders

## **Give Examples of Other Personal Computing Devices**



#### **Mobile Devices**


- Smartphones and tablets
  - Internet access
  - Email access
  - Digital cameras
  - GPS
  - Mapping tools
  - Document editing
  - Mobile apps





#### Wearables and GPS

- GPS (Global Positioning System)
  - Satellite-based navigation system
  - Used for
    - Location and navigation
    - Tracking and mapping
    - Timing
    - Geocaching





#### Wearables and GPS

- Wearables
  - Devices worn on the body
  - Used for
    - Health monitoring
    - Communication
    - Military operations
    - Entertainment



## Video Game Systems and Simulations

- Game consoles—Microsoft Xbox Scorpio and Sony PlayStation 5
  - High-end processors
  - High-end graphics capabilities
  - Play movies and music
  - Online game play
  - Browse the Internet
  - Use a game controller





## **Video Game Systems and Simulations**

- Handheld games
  - Portable
  - Listen to music and view photos and movies
  - Chat and access the Internet over cellular or wireless networks
  - 3D photo and graphic capability



# List the Various Types and Characteristics of Multiuser Computers



#### **Servers**

- Servers
  - Provide services such as Internet access and email to a client system
- Small and midrange computers
  - Perform complex calculations
  - Store customer information and transactions
  - Host an email system

#### **Servers**

- Mainframes
  - Process millions of transactions a day
  - Have largely been replaced by enterprise servers
- Enterprise servers
  - Allow thousands of users to use the system concurrently



# **Supercomputers**

- Very expensive
- Designed to perform limited number of tasks as quickly as possible
- Perform complex mathematical calculations
  - Weather forecasting
  - Medical research
- Can be a single computer with multiple processors or a group of computers working together

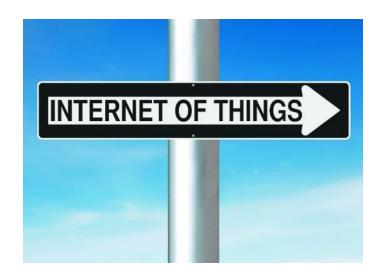


# Distributed and Grid Computing

- Distributed computing
  - Spreading processing tasks across multiple computers
- Grid computing
  - Form of distributed computing uses computers in one location
- Volunteer computing
  - Large-scale form of distributed computing
  - Harnesses the power of hundreds or thousands of computers






# **Explain Ubiquitous Computing and Convergence**





### **Embedded Computers**

- Specialized computers
- Internet of Things (IoT)
  - Connection of the physical world to the Internet







# Convergence

- Convergence—integration of technology on multifunction devices
  - Smartphones
  - Cell phones
  - Personal information management tools
  - Email
  - Web browsing





# Convergence

- Convergence—integration of technology on multifunction devices
  - Document editing
  - MP3 players
  - Cameras
  - -GPS
  - Games





# Copyright

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.