Declan ONUNKWO 02/14/2023

CSC344 — Programming Languages

Assignment: Backus-Naur Form (BNF) Assighment.

ABSTRACT

The aim of this assignment is to familiarize oneself with Backus-Naur Form and learn about its
use in computer science. This assignment will cover the basics of BNF, including its syntax,
symbols, and rules for defining a programming language. We also learn how BNF is used to
describe the structure and grammar of a language, and how it can be used to generate a parser
for that language. The first task has constraints which is helps one to better understand how to
create a BNF with strict rules, while the rest of the tasks are quite straightforward. The idea is
repetition is how we learn.

PROBLEM 1

The BNF Grammar

<Laughter> ::= <Ha> | <Hee> | <empty>

<Ha> ::="HA HA " <Reject> | "HAHA"

<Hee> ::="HEE " | "HEE " <Ha> | "HEE HEE " <Hee>
<Reject> ::= <Ha> | <Hee>

The Parse Trees
Task 2 : Prse dree Por i HA HA HEE Hee HEE HEe HwEE WA HA

<Law3latex>
|
< Ha>
 ~
HA HA LReject)
|
< Hea >
O
HEE Hee < Hee>
S
HeE HEE <+ee’>
~~
Hee <Had
HA ®A

Task 3 ¢ [ouse bLreoe Sor: HEE HA 4a A HA Ha He

<Lan.43bd:ex>
|

<{Hee>
= ~—
Ree < Ha>
T e
HA HA L Reject>
|
L Ha>
=
A ®Aa 4Reject>
|
<Ha>

|

HA Ha

PROBLEM 2

The BNF Grammar

<SQN> ::="0" | <nonZero>
<nonZero> ::= "1" <nonOne> | "2" <nonTwo> | "3" <nonThree> | <empty>

<nonOne> ::="0" <nonZero> | "2" <nonTwo> | "3" <nonThree> | <empty>

<nonTwo> ::="0" <nonZero> | "1" <nonOne> | "3" <nonThree> | <empty>
<nonThree> ::= "0" <nonZero> | "1" <nonOne> | "2" <nonTwo> | <empty>

The Parse Trees

Tasw 2. Pau'se dcee ﬁr @)

<sanS>
|
(®)

TasKS:Pwse -l:rep_ eer 132

<SAN>
I

<nonZeso>
/ \
1 <nonOae>
/ \
/ \
2 < von Tog >

I
< empty>

Task 4: While attempting to create a consecutive “2” with the BNF language above, it was not possible

because the production does not permit it.

The production <nonTwo> ::="0" <nonZero> | "1" <nonOne> | "3" <nonThree> | <empty>

The token “2” is not present in the above.

PROBLEM 3

The BNF Grammar

<BXR> ::= <operation> | "#t" | "#f"

<operation> ::= <and> | <or> | <not>

<and> ::="(and "<boolean>")" | "(and)"

<or>::="(or "<boolean>")"| "(or)"

<not> ::="(not #t)" | "(not #f)" | "(not #t)"<boolean> | "(not #f)"<boolean>
<boolean> ::= "#t "<boolean> | "#f "<boolean> | <operation> | <empty>

The Parse Trees

Tusk2 forse tren for (or 41%) Tok 37 Puse bew Bor Cond ot #6)88)

<BXR> X lem
l {operatton ¥

(O o.{“n'n) |
perse Lond $

| 0
<or> (and (boolm\
_— \ T~— |

{0 ho
CERETTE Al
VAR /(no’c)\
G {bol
" ool ean> (not #t) L boslean D
/N
<U“P+j> #£ <Lboleand

\

(%p‘l:j >

PROBLEM 4

The BNF Grammar
<LSS> ::= <sequence> | <empty>

<sequence> ::= <distance> <angle> <color> | <empty>

<distance> ::="(" <num>

<angle> ::= <num>

<color>::="RED) " <sequence> | " BLACK) " <sequence> | " BLUE) " <sequence>

The Parse Trees

M;’Parse Tree ﬁr (2o 95 BLack)
<Lss>

|
<S equen ce>

e N

{ distance s (an0|e> <{Color>

N LN

(<numd Loumdy [BLACK) <Sequence

I
Lempty >

120 95

Tk 3! Foce b & (10 180 Buug) (770 187 RED) (I91 45 Red)

<ksS>
|
{Sequented

Ldistancey (ma led <Lcolor)
< | | |
(<"I“IM) <“|‘i“‘> BlUE) {sequenced
70 180 {diclancey E"Jh‘"')
R o
(<“i‘l““> <nﬁ'ﬁ> RED) {Sequence>

7
8 & (distancey langley Lcolory

| RN
(4‘“‘“) 4nlulM> RepY) LSequenced
|

191

PROBLEM 5

The BNF Grammar
<MLines> ::= <ES> | <empty>

<ES> ::= <event> | <sequence> | <event><sequence> | <sequence><event> | <empty>

<event> ::= "PLAY " <ES> | "REST " <ES> | <ES> "PLAY " | <ES> "REST " | <empty>

<sequence> ::="RP " <ES>"LP" | "LP " <ES>"RP " | "S2 " <ES>"X2 " | "X2 " <ES>"S2 " | "S3 " <ES>"X3"
| "X3 " <ES>"S3" | <empty>

The Parse Trees

2) Yacse trea go'- P Piav RP PLaY
< Ml-c'no_s>
|

<ES>

<event >

/
EE \Pmy
[}

<sequence>
= | S
Lf <LEes> rP
<e.v:mt>
7\
<es> fLay
<emgty>
D Pose teew for 1 PLaY RP 52 PLAy PLAY X2 Lp 2 PAY S2
<MLM£§>
\
{ESZ
<event>
/ \
PLaY <es>
/<se.qu\.nc¢> < Sequence>
et LP X i&s)\ S2
— 1\
g2 ces> \xa e <e\s>
<e!1ex\t> <QMPU>

bl
PLRY hs >

I
{event>

PN
fuaY <es>
1
<empty >

PROBLEM 6

BNF stands for Backus-Naur Form. It is a notation used in computer science to formally describe the
syntax of programming languages. It specifies the structure and rules of a language, making it easier for
programmers to write code that is both accurate and readable. BNF is important because it provides a
way to define the grammar of a language, ensuring consistency and reducing the risk of errors. If the
rules of the grammar are followed, every possible permutation is achievable. BNF is also used in the

development of many programming languages and compilers.

