
Third Racket Programming Assignment

Abstract
This programming assignment mainly focuses on interacting with
various methods and concepts from Historical Lisp and Racket. In
the Historical Lisp section we look at interactions of older
Lisp methods and concepts within a Racket session. The rest of
the document contains definitions and interactions of basic list
processing presented within various Racket sessions.

--

Task 1 - Historical Lisp

Quote and Eval:

Interactions - Constants 9 and “red” ‘red

Interactions - Variants of the quote special form

Interactions - Illustrating the “unbound variable” error

Interactions - Examples of standard form evaluation

Interactions - Illustrating the “unbound function” error

Car, Cdr, and Cons:

Interactions - Examples of the car function

Interactions - Examples of the cdr function

Interactions - Examples of the cons function

Eq and Atom:

Interactions - Examples of the eq? function

Interactions - Examples of the atom? function

Lambda:

Interactions - Interactions featuring lambda function
application

Define:

Definitions - Defining four items, two variables and two
functions

Interactions - Referencing the two variables and applying the
two functions

Definitions - Redefining the two functions

Interactions -Illustrating the application of these functions

Definitions - Defining the area-of-circle function

Interactions - Testing the area-of-circle function

Cond:

Definitions - Defining the rgb, determine, and got-milk?
functions

Interactions - Mimicking the demo illustrating application of
the three functions

--

Task 2 - Referencers and Constructors

Racket Session featuring CAR, CDR, and CONS:

Interactions - Applying CAR, CDR, and CONS

Referencing a list element:

Interactions - Referencing a list element from scratch

Interactions - Referencing a list element from using list-ref

Creating a list:

Interactions - Creating a list from scratch

Interactions - Creating a list using list

Appending one list to another list:

Interactions - Appending two lists from scratch

Interactions - Appending two lists using append

Redacted Racket Session Feature Referencers and Constructors:

Interactions - Redacted Session
> (define languages ’(racket prolog haskell rust))
> languages
> ‘(racket prolog haskell rust)

> ‘languages
> ‘languages

> (quote languages)
> ‘languages

> (car languages)
> ‘racket

> (cdr languages)
> ‘(prolog haskell rust)
> (car (cdr languages))
> ‘prolog

> (cdr (cdr languages))
> ‘(haskell rust)

> (cadr languages)
> ‘prolog

> (cddr languages)

> ‘(haskell rust)

> (first languages)
> ‘racket

> (second languages)
> ‘prolog

> (third languages)
> ‘haskell

> (list-ref languages 2)
> ‘haskell

> (define numbers ’(1 2 3))
> (define letters ’(a b c))
> (cons numbers letters)
> ‘((1 2 3) a b c)

> (list numbers letters)
> ‘((1 2 3) (a b c))

> (append numbers letters)
> ‘(1 2 3 a b c)

> (define animals ’(ant bat cat dot eel))
> (car (cdr (cdr (cdr animals))))
> ‘dot

> (cadddr animals)
> ‘dot

> (list-ref animals 3)
> ‘dot

> (define a ’apple)
> (define b ’peach)
> (define c ’cherry)
> (cons a (cons b (cons c ’())))
> ‘(apple peach cherry)

> (list a b c)
> ‘(a b c)

> (define x ‘(one fish))
> (define y ‘(two fish))
> (cons (car x) (cons (car (cdr x)) y))
> ‘(one fish two fish)

> (append x y)
> ‘(one fish two fish)

--

Task 3 - Random Selection

Definitions - Defining the sampler program

Interactions - Mimicking the sampler program

--

Task 4 - Playing Card Programming Challenge

Definitions - Programming the card playing functionality

Interactions - Mimicking the card playing functionality

