

Belief Revision in Picnic Planning
Elijah Sumner, Kaitlyn Jesmonth, Franklin Camacho

Introduction

The weather can easily change in an instant, and interpreting forecasts and current

observations is often a crucial part in making weather-related decisions. However, this can often

pose a difficult task for the general public. In order to model a situation that incorporates belief

revision, we decided to use these ideas and simulate a user’s decision on whether it was a good

or bad day to go on a picnic. We used weather observations, two randomly generated forecasts,

and a survey taken from the class to show how people weigh each part of the forecast in terms of

importance to display the belief revision process. This project strives to make

predictions/decisions similar to a human, and convinces the user of the best possible option,

whether to go on a picnic or not.

Background

Weather forecasting as practiced by humans is an example of having to make judgments

in the presence of uncertainty. Many human forecasters use approaches based on the science of

meteorology to deal with the many challenges they face when forecasting the weather (Doswell,

2004). Probability based forecasting is provided to users as a way of making a decision

according to their needs. Many studies have indicated that there was a lack of agreement among

the general public and even the weather forecasters themselves on what the probability of a

weather event is, showing a variety of interpretations of a statement like this, “70% chance of

showers tomorrow” (Elía & Laprise, 2005). Since many people have varying opinions on what

the probability of a chance of rain is, they may make different choices regarding their day, like

whether to bring out an umbrella, or to go out and have fun for the day.

Most people base their beliefs on what a “chance” of rain actually means on a few

different things, that being how long it rains for, how much of an area it will cover, or how many

days it will cover. If there was a forecast for a 30% chance of rain, some people might think “It

will rain for 30% of the day tomorrow”, others might think the rain will cover 30% if the region

that they live in, and lastly others might think “It will rain on 30% of days like tomorrow”

(Gigerenzer et al., 2005). So it is difficult to pinpoint one general way that humans reason about

weather forecasting, as many of us have different opinions and beliefs about what those

probabilities really mean. If we were to generalize it, it would use the National Weather

Service’s definition of what the PoP (Probability of Precipitation) is: the likelihood of occurrence

(expressed as a percentage) of a measurable amount of liquid precipitation during a specified

period of time at any given point in the forecast area (National Weather Service, n.d.). Basically,

a 30% chance of rain tomorrow really means at least some amount of rain will fall the next day

in 3 out of 10 cases at some point in the forecast area. With just saying 30% chance of rain, it

implies to the general public that there is only a possibility that it will rain tomorrow, where with

the time and region definitions, which is the true definition, forecasters mean that it will rain

tomorrow for certain in a given place (Gigerenzer et al., 2005).

When looking more specifically at how reasoning and understanding probabilities in

humans and as it relates to our project, one study found that humans often analyze things in

terms of one or a few samples of different outcomes (Vul et al., 2014). This very idea counteracts

some standard assumptions when thinking about optimality. Rather than considering the full

distribution, people appear often to make decisions based on a posterior probability distribution,

which is the revised probability of an event occurring after taking new information into account

(Vul et al., 2014; Hayes, 2020). This means that for example when trying to decide if it might be

a good day to go on a picnic like in our project, a person might think of several scenarios based

on the weather forecast.

However an important question to ask is, how many samples should one consider in order

to optimize their worst or best case reward over several different decisions? The study found that

making many quick, but possibly suboptimal decisions based on a few samples over a long

period of time is the most optimal strategy (Vul et al., 2014). In particular, the research found

when looking at 2, 4, 8, 16, and 32 different discrete alternatives for unidimensional continuous

choices, that a decision based on a very small set of samples is about the same as a decision on a

full probability distribution (Vul et al., 2014). They also discovered that when the stakes are

higher for a given problem, more sample alternatives should be considered (Vul et al., 2014). For

our project, coming up with some weighting scheme of the most important weather conditions to

a person on a given day should be implemented in the model. Asking the user what they are most

comfortable with could also play a role in weighting various different decisions within our model

world.

But exactly how much is a person coming up with several sample scenarios going to

cost? That is something that needs to be defined for the task at hand. Usually time and effort is

an important factor. Another key idea here to keep in mind is that oftentimes human decisions

are continuous. These sample scenarios that are brought up in a person’s mind might not always

have one exact clear answer. Yet, the decisions we make based on the weather can often be very

binary. This is why it is imperative that a strategy with the general idea of assessing, “is this

going to put me closer to the optimal answer?” is used (Vul et al., 2014). Again, when looking at

what our group is trying to model, this could be a very beneficial approach to try to determine

the ultimate goal, deciding whether or not it is a good day to have a picnic.

Methods

According to the paper written by Franz Huber, he talks about how an individual should

revise their beliefs when they receive new information on that belief. The example they give in

the paper is: “Sophia believes many things, among others that it will rain on Tuesday, that it will

be sunny on Wednesday, and that weather forecasts are always reliable. Belief revision theory

tells Sophia how to revise her beliefs when she learns that the weather forecast for Tuesday and

Wednesday predicts rain.” (Huber, 2013, p. 3). This information tells us that with her original

belief that it will be rainy on Tuesday, and sunny on Wednesday isn’t correct anymore, so with

her belief that the forecast is always reliable, she keeps her belief that Tuesday is rainy, and gives

up her belief that it is sunny on Wednesday. As we can see, even though she had her original

belief, the fact that she had the belief that the forecast was 100% reliable made it so she wouldn't

doubt her decision to give up her belief that it was sunny on Wednesday.

According to another paper written by Fabio Paglieri, he writes that individuals also store

information that they do not currently believe, since in the future that information could then

become believed if new evidence is gathered (Paglieri, 2004). Along with this, beliefs that are

accepted currently may be refused later on, either because they were shown to be incorrect, or

because more plausible information was provided from a different source (Paglieri, 2004). This

ties into our forecast problem, since someone could observe sunny skies and a warm day, but

after an hour they watch the news, and the forecast states that there is a storm about to roll into

the area. Now this person uses this new evidence to refuse their original belief that it would be

sunny, and then believe that it will rain in the future instead. An individual also stores

information from two contradictory sources (say 2 different news sources like BBC and CNN),

one claiming that there will be a perfectly sunny day tomorrow, and the other stating that there

will be showers throughout the day tomorrow. The individual is more inclined to believe the one

that they have more trust in (or whichever has the better reputation) (Paglieri, 2004). If a third

independent source came in and also stated that tomorrow will be a perfectly sunny day, the

individual will use this information to update their original beliefs, choosing to believe that it

will be sunny since two sources (assuming the third independent source is reliable), said that it

would be sunny in their forecast.

For our problem that we have proposed, which is “is today a good day to go have a

picnic?”, we have developed a process of belief revision that we will be modeling in this project

represented in Figure 1. The way that we will represent the original beliefs in our problem will

mainly be based on present observations, which was set to ideal conditions in this project. A

forecast is then randomly generated, and it is

further determined, using a weighted point

system, how ideal the forecast is for a

picnic. If the forecast is expected to be ideal,

the modeled person will continue with their

plans for a picnic, while they will cancel

their plans if the forecast is not ideal. Drawing off some points presented earlier, they will not

expect this decision to change or go back and check the forecast again before they leave for their

picnic. While the current scope of the forecast in the project does not have much constraint in

realism, adding this in later would even better help the belief revision model real-world

scenarios. This could even possibly be accomplished by allowing the program to ingest real

current weather observations and forecasts to more so eliminate randomness and inconsistencies

in the forecast outputs. For example, it would not be expected that the temperature would drop

Figure 1: Graphical representation of the belief revision process of
the model.

from 70 °F to 40 °F, but the scope of the program does currently allow this scenario without

much restriction.

It is also important to note how each forecast variable is weighted in the model’s eyes.

This was done using a form sent out to the class, which asked them to rank in terms of

importance temperature, dewpoint,

wind, and the current weather

conditions, and these results were

reported in Figure 2 and translated

into the weight values in Figure 3.

Based on the forecast, the weights

determined by the average importance

of the class, and what’s displayed in

the forecast, the model will make their

original prediction as to whether or

not it is a good day to have a picnic.

Once it is time for the picnic, the model will once again check the current observational

conditions. This is not intended as an intention check of the conditions, since their belief has

already been set, but designed as a response to a person walking outside to leave and

subconsciously re-observing the weather. If the model

determines that the conditions are now questionable for a

picnic, they will check the forecast only for the variables in

question, since their belief has only changed for those. If the

model determines that one of the variables is too bad for a picnic, they will cancel it without

Figure 2: Condition importance survey results.

Figure 3: Individual variable weights.

checking the forecast. If the model determines that the new conditions are still within a set

comfort level, then it will proceed with the picnic as planned. However, if the new conditions do

not fall within this comfort level, the model

will call off the picnic. In the scope of the

model, there is a 1 in 8 chance that any

individual variable will change from the

forecast, leading to about a 1 in 2 chance of

any part of the conditions deviating from the

forecast. The conditions for what is considered

good, questionable, or bad were set by Elijah and

Kaitlyn using their meteorology background and

their knowledge on what is reasonable in the meteorology realm, and reported in Figure 4.

Results:

We were able to create several scenarios with our model successfully within the scope of

our picnic problem. All of the scenarios started out with good conditions in order to keep things

simple. However, the differences came in once the randomly generated forecast was created and

when the second observations were checked right before actually going on the picnic. For

example, in one of the most basic scenarios the conditions started out ideal, the initial forecast

had good conditions, and the second observations right before going on the picnic was also ideal.

Figure 4: Bad and questionable condition criteria.

This is where the model was able to show that the weather turned out great for a picnic.

One the other end of the spectrum, another scenario that was established was when the

initial forecast looked so bad that the user just decided right away not to go on a picnic.

Finally, two other situations arose. One of which was when there was a good forecast to

start, but then the conditions became questionable and ended up staying good in the end. This

was replicating a situation where the weather might have changed over the course of a couple of

hours and a person might have considered not going on the picnic for just a quick second, before

still resorting to his or her initial belief. Each of the questionable conditions within that second

forecast were also displayed.

This final example really displayed our belief revision capabilities within the model. In this

scenario, an originally favorable forecast for a picnic ends up not panning out and the second

observations don’t look as ideal anymore because of quickly changing weather conditions. The

model ends up re-checking the forecast a second time, and finds that conditions are not expected

to improve and displays that it was no longer a good day to go on a picnic.

Frequently this can happen in real life situations when it is supposed to be hot out in the summer

and some afternoon thunderstorms pop up which could impact a person's outdoor plans and their

decisions regarding those plans.

 From creating this model, we were easily able to output several different types of

scenarios that can in fact occur in the real world, and observe how the model responded to those

different scenarios. We were even able to have some fun with it and create a 1 in 1000 chance

that if it was decided that the picnic would happen, several orangutans would escape from the

zoo and ruin the picnic.

All of these examples really display the versatility of our system while still modeling belief

revision and the human thought process.

Discussion

Overall, the model performed well and did what we set out to do. However, because of

the limited time constraint, our version could still be improved in several manners. To make

things simpler for the time given for this project, we were only able to have set weights to

determine the most important and least important weather information for determining whether

or not someone should go and have a picnic. This was accomplished by sending out a Google

Form survey to the entire COG/CSC 366 class and asking our fellow classmates what their

opinions were for this given situation. Based on their responses, that is how we determined the

weights. So in the future, if there was something that we would do differently, it would be to

probably try to either sample a bigger population to determine the weights, or try to make the

weights dynamic in the sense that they could change depending on a given situation. For our

purposes just setting the weights worked just fine, but it would be a nice added bonus to be able

to weigh certain weather phenomena more heavily depending on a given forecast for example.

Another success of this model was that we were able to create a random forecast that was

different from the current observations. Additionally, this forecast is more sophisticated than the

observations. It gives a little bit more information that you can expect than just reciting back the

current observations which is a success of our model. Right now, the random forecast generated

by the model doesn’t have any constraints on it. So meteorologically speaking, the outputs for

the forecast don’t always make complete sense. For example, if a temperature of 99 degrees is

forecasted with a dewpoint of 48 degrees and there is 90% chance of rain in the forecast this

doesn’t make true sense. In order to have precipitation from a meteorological standpoint, the

dewpoint and the temperature need to be close together because when this is the case, it means

the air is saturated and can produce precipitation. Improving on this forecast and making it a

little bit more realistic is something that should be worked on moving forward as that will make

our model even more practical when comparing it to the real world.

However, even though we were not able to set all of the constraints for our model, we

were able to set some minimal constraints on what the model can produce. For example, the

model output dewpoint must be lower than the temperature. This makes sense because the

meteorological definition for the dewpoint is the temperature which the air needs to be cooled to

reach saturation. Dewpoint has to be lower than the temperature. Therefore, we made sure to

reflect this accurately in our model. Additionally, another added success in our model is the fact

that we were able to get the probability of precipitation or PoP to follow the weather condition.

For example, if the conditions were cloudier then your PoP value might be higher than on a day

when it is perfectly clear and sunny. These basic constraints that we set were just some of the

first things that needed to make sense and be considered for our model, so we felt it was best to

focus on these elements first.

Setting our weights based on the survey and using our meteorological knowledge to set

some constraints for our model to make sense was generally a good approach for this project.

While it would be nice to expand on some functionalities of this project, this model is still a

useful cognitive tool. Given that meteorological information can be very hard to digest as an end

user, this model helps give a scenario of what the weather could look like on a given day. It

displays some of the thought processes behind making a decision to go on a picnic or not, and

possibly revising that belief, something many of us do daily when it comes to making weather-

related decisions.

Conclusion

 In conclusion, our project turned out to be a success, and our Prolog code worked as

intended. While there are some limitations, our model was able to take in the randomly generated

forecasts, and then verify based on observations if the conditions were favorable for a picnic.

The belief revision came in when the forecast changed leading up to the picnic and a new

decision needed to be made using the weights determined by the class survey. Overall,

knowledge from this course about Prolog coding as well as belief revision was very beneficial in

this project and accomplishing our goal of modeling decision making based on the weather.

References

Doswell, C. A. (2004). Weather Forecasting by Humans—Heuristics and Decision Making.

Weather and Forecasting, 19(6), 1115–1126. https://doi.org/10.1175/waf-821.1

Elía, R. de, & Laprise, R. (2005). Diversity in Interpretations of Probability: Implications for

Weather Forecasting. Monthly Weather Review, 133(5), 1129–1143.

https://doi.org/10.1175/MWR2913.1

Gigerenzer, G., Hertwig, R., van den Broek, E., Fasolo, B., & Katsikopoulos, K. V. (2005). “A

30% Chance of Rain Tomorrow”: How Does the Public Understand Probabilistic

Weather Forecasts?. Risk Analysis, 25(3), 623–629. https://doi.org/10.1111/j.1539-

6924.2005.00608.x

Hayes, A. (2020). Understanding Posterior Probability. Investopedia.

https://www.investopedia.com/terms/p/posterior-probability.asp

Huber, F. (2013). Belief Revision I: The AGM Theory. Philosophy Compass, 8(7), 604–612.

https://doi.org/10.1111/phc3.12048.

National Weather Service. (n.d.). FAQ - What is the Meaning of PoP. Www.weather.gov.

Retrieved November 2, 2021, from

https://www.weather.gov/ffc/pop#:~:text=Forecasts%20issued%20by%20the%20Nationa

l%20Weather%20Service%20routinely

Paglieri, F. (2004). Data-oriented belief revision: Towards a unified theory of epistemic

processing. In Proceedings of STAIRS (pp. 179-190).

Vul, E., Goodman, N., Griffiths, T. L., & Tenenbaum, J. B. (2014). One and Done? Optimal

Decisions From Very Few Samples. Cognitive Science, 38(4), 599–637.

https://doi.org/10.1111/cogs.12101

Appendix A: Prolog Code

%%%%%%%%%%
%Knowledge Base%
%%%%%%%%%%

%Weighting Points
temp_pts(4.4).
cond_pts(8.3).
humid_pts(0.1).
wind_pts(3.7).
max_pts(50).

%Ideal Conditions
temp_ideal(70).
dewpoint_ideal(60).
wind_ideal(0).

%Forecast condition points
weather_pts(condition(sunny), 0).
weather_pts(condition(partly_cloudy), 0).
weather_pts(condition(overcast), 1).
weather_pts(condition(weather(rain)), 5).
weather_pts(condition(weather(snow)), 5).
weather_pts(condition(weather(sleet)), 5).
weather_pts(condition(weather(graupel)), 5).
weather_pts(condition(weather(lightning)), 7).
weather_pts(condition(weather(tornado)), 5).
weather_pts(_, 0).

%%%%%%%%%%%%%%%%%%
%Forecast & Observation Variables%
%%%%%%%%%%%%%%%%%%

%Initial Observations
obs_cond(obs(sunny)).
obs_temp(obs(mild)).
obs_humid(obs(nhumid)).
obs_wind(obs(calm)).

%Second Observations
obs2_cond(_, NCond):-
 random(1, 8, 1),
 get_cond(GCond),
 cond_to_obs(GCond, NCond).

obs2_cond(Cond, NCond):-
 cond_to_obs(Cond, NCond).

obs2_temp(_, NTemp, GTemp):-
 random(1, 8, 1),
 temp(GTemp),
 temp_to_obs(GTemp, NTemp).
obs2_temp(Temp, NTemp, Temp):-
 temp_to_obs(Temp, NTemp).

obs2_humid(_, Temp, NDew):-
 random(1, 8, 1),
 dewpoint(GDew, Temp),
 dew_to_obs(GDew, NDew).
obs2_humid(Dew, _, NDew):-
 dew_to_obs(Dew, NDew).

obs2_wind(_, NWind):-
 random(1, 8, 1),
 wind(GWind),
 wind_to_obs(GWind, NWind).
obs2_wind(Wind, NWind):-
 wind_to_obs(Wind, NWind).

%Variables to observations
cond_to_obs(condition(sunny), obs(sunny)).
cond_to_obs(condition(partly_cloudy), obs(cloudy(partly(dark)))):-
 random(1, 4, 1).
cond_to_obs(condition(partly_cloudy), obs(cloudy(partly(light)))).
cond_to_obs(condition(overcast), obs(cloudy(overcast(dark)))):-
 random(1, 4, 1).
cond_to_obs(condition(overcast), obs(cloudy(overcast(light)))).
cond_to_obs(condition(weather(_)), obs(precip(nclearing))):-
 random(1, 4, 1).
cond_to_obs(condition(weather(_)), obs(precip(clearing))).

temp_to_obs(Temp, obs(vcold)):-
 Temp < 50.
temp_to_obs(Temp, obs(cold)):-
 Temp < 60,
 Temp >= 50.
temp_to_obs(Temp, obs(mild)):-
 Temp < 80,
 Temp >= 60.
temp_to_obs(Temp, obs(warm)):-
 Temp < 90,

 Temp >= 80.
temp_to_obs(Temp, obs(vwarm)):-
 Temp >= 90.

dew_to_obs(Dew, obs(nhumid)):-
 Dew < 60.
dew_to_obs(Dew, obs(humid)):-
 Dew >= 60,
 Dew < 70.
dew_to_obs(Dew, obs(vhumid)):-
 Dew >= 70.

wind_to_obs(Wind, obs(calm)):-
 Wind < 5.
wind_to_obs(Wind, obs(breezy)):-
 Wind >= 5,
 Wind < 15.
wind_to_obs(Wind, obs(windy)):-
 Wind >= 15.

%Values to conditions
get_cond(Output):-
 random(0, 100, Random),
 get_cond(Random, Output).
get_cond(Random, Output):-
 Random < 30,
 Output = condition(sunny).
get_cond(Random, Output):-
 Random < 75,
 Output = condition(partly_cloudy).
get_cond(Random, Output):-
 Random < 82,
 Output = condition(overcast).
get_cond(Random, Output):-
 Random < 85,
 Output = condition(weather(rain)).
get_cond(Random, Output):-
 Random < 90,
 Output = condition(weather(lightning)).
get_cond(Random, Output):-
 Random < 95,
 Output = condition(weather(snow)).
get_cond(Random, Output):-
 Random < 96,
 Output = condition(weather(graupel)).
get_cond(Random, Output):-

 Random < 100,
 Output = condition(weather(sleet)).
get_cond(Random, Output):-
 Random < 101,
 Output = condition(weather(tornado)).

%Forecast
cond(Output) :-
 get_cond(Output).
temp(Temp):-
 random(50, 100, Temp).
dewpoint(Dew, Temp):-
 random(35, Temp, Dew).
wind(Wind):-
 random(0, 20, Wind).
pop(Pop, condition(weather(_))):-
 random(30, 100, Pop).
pop(Pop, _):-
 random(0, 29, Pop).

%%%%%%%%%%
%Variable Checks%
%%%%%%%%%%

%Does a forecast needs to be checked?
forecast(cond, [obs(cloudy(overcast(light))), obs((cloudy(partly(dark)))), obs(precip(clearing))]).
forecast(temp, [obs(warm), obs(cold)]).
forecast(dewpoint, [obs(humid)]).
forecast(wind, [obs(breezy)]).
forecast(pop, [cond(weather(_))]).

%Is a certain variable good or bad for a picnic?
bad([condition(overcast), condition(weather(lightning)), condition(weather(tornado)),

condition(weather(snow)), condition(weather(graupel)),
 condition(weather(rain)), condition(weather(sleet)), obs(cloudy(overcast(dark))),
 obs(precip(nclearing)), obs(vwarm), obs(vcold), obs(vhumid), obs(windy)]).

is_good(Variable) :-
 bad(List),
 \+ member(Variable, List).

%Check temperature forecast
check(temp, Obs, _, good):-
 forecast(temp, TempList),
 \+ member(Obs, TempList).

check(temp, Obs, Forecast, good) :-
 forecast(temp, TempList),
 member(Obs, TempList),
 Forecast >= 50,
 Forecast < 90,
 write("The current temperature is questionable..."), nl,
 write("The temperature is now forecasted to be "), write(Forecast),
 write("°, which is good for a picnic"), nl, nl.
check(temp, _, Forecast, bad):-
 write("The current temperature is questionable..."), nl,
 write("The temperature is now forecasted to be "), write(Forecast),
 write("°, which is not good for a picnic"), nl, nl.

%Check dewpoint forecast
check(dew, Obs, _, good):-
 forecast(dewpoint, DewList),
 \+ member(Obs, DewList).
check(dew, _, Forecast, good):-
 Forecast < 70,
 write("The current humidity feels questionable..."), nl,
 write("The dewpoint is now forecasted to be "), write(Forecast),
 write("°, which is good for a picnic"), nl, nl.
check(dew, _, Forecast, bad):-
 write("The current humidity feels questionable..."), nl,
 write("The dewpoint is now forecasted to be "), write(Forecast),
 write("°, which is notgood for a picnic"), nl, nl.

%Check wind forecast
check(wind, Obs, _, good):-
 forecast(wind, WindList),
 \+ member(Obs, WindList).
check(wind, _, Forecast, good):-
 Forecast < 15,
 write("The current wind is questionable..."), nl,
 write("The wind is now forecasted to be "), write(Forecast),
 write("MPH, which is good for a picnic"), nl, nl.
check(wind, _, Forecast, bad):-
 write("The current wind is questionable..."), nl,
 write("The wind is now forecasted to be "), write(Forecast),
 write("MPH, which is not good for a picnic"), nl, nl.
%Check conditions forecast
check(cond, Obs, _, _, good):-
 is_good(Obs),
 forecast(cond, CondList),
 \+ member(Obs, CondList).
check(cond, Obs, Forecast, Pop, good):-

 is_good(Obs),
 check(pop, Pop, good),
 parse_obs(cond, Forecast, NForecast),
 write("The current weather conditions are questionable..."), nl,
 write("The weather conditions are now forecasted to be "), write(NForecast),
 write(", which is good for a picnic"), nl, nl.
check(cond, _, Forecast, _, bad):-
 parse_obs(cond, Forecast, NForecast),
 write("The current weather conditions are questionable..."), nl,
 write("The weather conditions are now forecasted to be "), write(NForecast),
 write(", which is not good for a picnic"), nl, nl.

%Check dewpoint forecast
check(pop, Pop, good):-
 Pop < 50.
check(pop, Pop, bad):-
 Pop >= 50.

%%%%%%%%%%
%Parsing variables%
%%%%%%%%%%

%Clouds
parse_clouds(Input, Output):-
 Input = overcast(dark),
 Output = "overcast with dark clouds".
parse_clouds(Input, Output):-
 Input = overcast(light),
 Output = "overcast with light clouds".
parse_clouds(Input, Output):-
 Input = partly(dark),
 Output = "partly cloudy with dark clouds".
parse_clouds(Input, Output):-
 Input = partly(light),
 Output = "partly cloudy with light clouds".

%Precip
parse_precip(Input, Output):-
 Input = clearing,
 Output = "precipitating with distant clearing".
parse_precip(Input, Output):-
 Input = nclearing,
 Output = "precipitating with no distant clearing".

%Temperatures
parse_obs(temp, Input, Output):-
 Input = obs(Temp),
 parse_obs(temp, Temp, Output).
parse_obs(temp, Input, Output):-
 Input = vwarm,
 Output = "very warm".
parse_obs(temp, Input, Output):-
 Input = warm,
 Output = "warm".
parse_obs(temp, Input, Output):-
 Input = mild,
 Output = "mild".
parse_obs(temp, Input, Output):-
 Input = cold,
 Output = "cold".
parse_obs(temp, Input, Output):-
 Input = vcold,
 Output = "very cold".

%Humidity
parse_obs(humid, Input, Output):-
 Input = obs(Dew),
 parse_obs(humid, Dew, Output).
parse_obs(humid, Input, Output):-
 Input = vhumid,
 Output = "high".
parse_obs(humid, Input, Output):-
 Input = humid,
 Output = "moderate".
parse_obs(humid, Input, Output):-
 Input = nhumid,
 Output = "low".

%Wind
parse_obs(wind, Input, Output):-
 Input = obs(Wind),
 parse_obs(wind, Wind, Output).
parse_obs(wind, Input, Output):-
 Input = windy,
 Output = "windy".
parse_obs(wind, Input, Output):-
 Input = breezy,
 Output = "breezy".
parse_obs(wind, Input, Output):-
 Input = calm,

 Output = "calm".

%Conditions
parse_obs(cond, Input, Output):-
 Input = obs(Cond),
 parse_obs(cond, Cond, Output).
parse_obs(cond, Input, Output):-
 Input = condition(precip(Precip)),
 parse_precip(Precip, Output).
parse_obs(cond, Input, Output):-
 Input = precip(Precip),
 parse_precip(Precip, Output).
parse_obs(cond, Input, Output):-
 Input = cloudy(Cloud),
 parse_clouds(Cloud, Output).
parse_obs(cond, Input, Output):-
 Input = condition(weather(Output)).
parse_obs(cond, Input, Output):-
 Input = condition(partly_cloudy),
 Output = "partly cloudy".
parse_obs(cond, Input, Output):-
 Input = condition(Output).
parse_obs(cond, Input, Output):-
 Input = Output.

evaluate_score(Score, good):-
 max_pts(Max),
 Score =< Max.
evaluate_score(Score, bad):-
 max_pts(Max),
 Score > Max.

dew_pts(Forecast, Ideal, 0):-
 Forecast =< Ideal.
dew_pts(Forecast, Ideal, Output):-
 Output is (abs(Ideal - Forecast)/2).

evaluate_pts(Temp, Dew, Cond, Pop, Wind, Result):-
 %Get ideal variables
 temp_ideal(Itemp),
 dewpoint_ideal(Idew),
 wind_ideal(Iwind),

 %Get variable weights
 temp_pts(Ptemp),
 cond_pts(Pcond),

 humid_pts(Pdew),
 wind_pts(Pwind),

 %Get variable differences
 Dtemp is (abs(Itemp - Temp)/2),
 Dwind is (abs(Iwind - Wind)/2),
 dew_pts(Dew, Idew, Ddew),
 weather_pts(Cond, Dcond),

 %Determine variable points
 Stemp is (Dtemp * Ptemp),
 Sdew is (Ddew * Pdew),
 Swind is (Dwind * Pwind),
 Scond is ((Dcond * (Pop / 100)) * Pcond),

 Sum is (Stemp + Sdew + Swind + Scond),
 evaluate_score(Sum, Result).

picnic:-
 %Current observations from knowledge base
 obs_cond(obs(Cond)),
 obs_temp(obs(Temp)),
 obs_humid(obs(Dew)),
 obs_wind(obs(Wind)),

 %Current forecast from knowledge base
 temp(FTemp),
 cond(FCond),
 dewpoint(FDew, FTemp),
 wind(FWind),
 pop(FPop, FCond),

 %Second observations
 obs2_temp(FTemp, NTemp, DTemp),
 obs2_cond(FCond, NCond),
 obs2_humid(FDew, DTemp, NDew),
 obs2_wind(FWind, NWind),

 %Second forecast
 temp(NFTemp),
 cond(NFCond),
 dewpoint(NFDew, NFTemp),
 wind(NFWind),
 pop(NFPop, NFCond),

 %That edge case

 %Execute scenario
 initial_observations(Cond, Temp, Dew, Wind, Result),
 initial_forecast(FCond, FTemp, FDew, FWind, FPop, Result, Result2),
 second_observations(NCond, NTemp, NDew, NWind, Result2, Result3),
 second_forecast(NCond, NFCond, NTemp, NFTemp, NDew, NFDew, NWind, NFWind,

NFPop, Result3, FinalResult),
 end(FinalResult).

initial_observations(Cond, Temp, Dew, Wind, good):-
 is_good(Cond),
 parse_obs(cond, Cond, CondOut),
 parse_obs(temp, Temp, TempOut),
 parse_obs(humid, Dew, DewOut),
 parse_obs(wind, Wind, WindOut),
 write("Walking outside, the current weather looks good for a picnic later..."), nl,
 write("It is currently "), write(CondOut), write(" with "), write(TempOut),
 write(" temperatures, "), write(DewOut), write(" humidity, and "),

write(WindOut), write(" winds"), nl, nl.
initial_observations(Cond, _, _, _, bad):-
 write(Cond), nl,
 write("Walking outside, the current weather does not look good for a picnic later...").

initial_forecast(Cond, Temp, Dew, Wind, Pop, good, good):-
 evaluate_pts(Temp, Dew, Cond, Wind, Pop, good),
 parse_obs(cond, Cond, NewCond),
 write("The current forecast looks good for a picnic later..."), nl,
 write("The forecast has a temperature of "), write(Temp), write("° with "),
 write(NewCond), write(" conditions, "), write(Dew), write("° dewpoints, and "),
 write(Wind), write(" MPH winds with a "), write(Pop), write("% chance of

precipitation."),nl, nl.
initial_forecast(Cond, Temp, Dew, Wind, Pop, good, bad):-
 parse_obs(cond, Cond, NewCond),
 write("The current forecast does not look good for a picnic later..."), nl,
 write("The forecast has a temperature of "), write(Temp), write("° with "),
 write(NewCond), write(" conditions, "), write(Dew), write("° dewpoints, and "),
 write(Wind), write(" MPH winds with a "), write(Pop), write("% chance of

precipitation."),nl, nl.
initial_forecast(_, _, _, _, _, _, bad).

second_observations(Cond, Temp, Dew, Wind, good, none):-
 is_good(Cond),
 is_good(Temp),
 is_good(Dew),
 is_good(Wind),
 forecast(cond, CondList),

 forecast(temp, TempList),
 forecast(dewpoint, DewList),
 forecast(wind, WindList),
 (member(Cond, CondList); member(Temp, TempList); member(Dew, DewList);
 member(Wind, WindList)),
 parse_obs(cond, Cond, CondOut),
 parse_obs(temp, Temp, TempOut),
 parse_obs(humid, Dew, DewOut),
 parse_obs(wind, Wind, WindOut),
 write("It is now time for the picnic..."), nl, nl,
 write("Walking outside, the weather looks worse than forecasted..."), nl,
 write("It is currently "), write(CondOut), write(" with "), write(TempOut),
 write(" temperatures, "), write(DewOut), write(" humidity, and "),
 write(WindOut), write(" winds"), nl, nl.
second_observations(Cond, Temp, Dew, Wind, good, good):-
 is_good(Cond),
 is_good(Temp),
 is_good(Dew),
 is_good(Wind),
 parse_obs(cond, Cond, CondOut),
 parse_obs(temp, Temp, TempOut),
 parse_obs(humid, Dew, DewOut),
 parse_obs(wind, Wind, WindOut),
 write("It is now time for the picnic..."), nl, nl,
 write("Walking outside, the weather still looks good for a picnic..."), nl,
 write("It is currently "), write(CondOut), write(" with "), write(TempOut),
 write(" temperatures, "), write(DewOut), write(" humidity, and "),

write(WindOut), write(" winds"), nl, nl.
second_observations(Cond, Temp, Dew, Wind, good, bad):-
 parse_obs(cond, Cond, CondOut),
 parse_obs(temp, Temp, TempOut),
 parse_obs(humid, Dew, DewOut),
 parse_obs(wind, Wind, WindOut),
 write("It is now time for the picnic..."), nl, nl,
 write("Walking outside, the weather does not look good for a picnic anymore..."), nl,
 write("It is currently "), write(CondOut), write(" with "), write(TempOut),
 write(" temperatures, "), write(DewOut), write(" humidity, and "),

write(WindOut), write(" winds"), nl, nl.
second_observations(_, _, _, _, _, bad).

second_forecast(Cond, FCond, Temp, FTemp, Dew, FDew, Wind,
 FWind, FPop, none, good):-
 check(cond, Cond, FCond, FPop, good),
 check(temp, Temp, FTemp, good),
 check(dew, Dew, FDew, good),
 check(wind, Wind, FWind, good).

second_forecast(Cond, FCond, Temp, FTemp, Dew, FDew, Wind,
 FWind, FPop, none, bad):-
 check(cond, Cond, FCond, FPop, _),
 check(temp, Temp, FTemp, _),
 check(dew, Dew, FDew, _),
 check(wind, Wind, FWind, _).
second_forecast(_, _, _, _, _, _, _, _, _, good, good).
second_forecast(_, _, _, _, _, _, _, _, _, bad, bad).

end(good):-
 random(1, 1000, 1),
 write("The weather turned out to be great for the picnic, so you decide
 to go and have one!"), nl, nl,
 write("However..."), nl,
 write("You arrive to find the park destroyed by a tornado, and can no
 longer have your picnic :(").
end(good):-
 random(1, 1000, 2),
 write("The weather turned out to be great for the picnic, so you decide
 to go and have one!"), nl, nl,
 write("However..."), nl,
 write("You arrive to find the park swarming with several
 orangutans that escaped from the zoo, so you can't have your picnic :(").
end(good):-
 write("The weather turned out to be great for the picnic, so you decide
 to go and have one!").
end(bad):-
 write("The weather did not turn out so great for the picnic, so you decided
 to just stay home").

