Belief Revision in Picnic Planning

Elijah Sumner, Kaitlyn Jesmonth, Franklin Camacho

Introduction

pic·nic

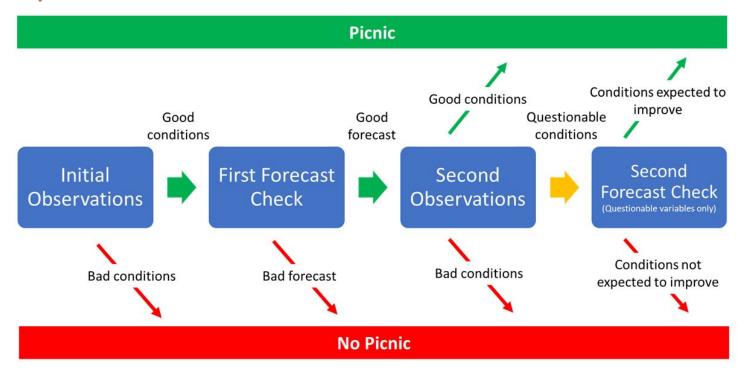
/'pik_{nik/}

noun

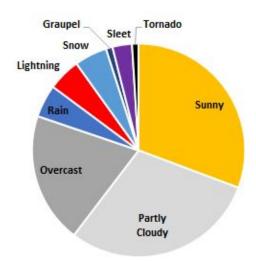
 an outing or occasion that involves taking a packed meal to be eaten outdoors.

"we swam and went on picnics"

- We worked on a system that could tell if the weather was good enough for a picnic
- The system would base its belief on an initial observation, the weather forecast, and a second observation (and second forecast check if needed)
- There was also not much research on our specific problem on how people weigh the different weather properties(temperature, humidity, etc)
- So we had to survey the class to get a basis on how people weigh each part of the forecast


Background

- Isn't a lot of specific research on weather-related belief revision process
 - Tried to use Eli and Kaitlyn's meteorology backgrounds to help
- Vul et al. (2014) found that humans use revised probability of an event occurring after taking new information into account
 - Basis for the belief revision model we created
 - Checks weather observations, looks at several forecasts
 - Takes new information into account before in making decision about going on picnic


Approach

- A model was created to simulate belief revision leading up to a picnic that someone is planning
- Uses a combination of observations and a randomly generated forecasts to modify belief over a time period
- Will always result in either the person deciding that it is good to have a picnic or that is is not good to have a picnic

Implementation of Belief Revision

Forecast Condition Distribution

Condition	Chance [%]
Sunny	30
Partly Cloudy	30
Overcast	20
Rain	5
Lightning	5
Snow	5
Graupel	1
Sleet	3
Tornado	1

Forecast Belief Determination

- Each forecast is assigned a point depending on how unideal it is for a picnic
- Point is the sum of individual variable points
 - Temperature points are determined by half the positive difference from the ideal times the weight
 - Dewpoint points are determined by half the positive difference from the ideal times the weight if the forecast is greater than the ideal. 0 points are assigned if the forecast is less than the ideal
 - Wind points are determined by half the positive difference from the ideal times the weight
 - Condition points are determined using a preset point value for each condition times the weight
- Good forecast for a picnic if the sum is less than the maximum allowed points (50 pts)

Forecast Condition Point Values		
Condition	Points	
Sunny	0	
Partly Cloudy	0	
Overcast	1	
Rain	5	
Snow	5	
Sleet	5	
Graupel	5	
Lightning	7	
Tornado	10	

Variable Weights		
Variable	Weight	
Temp	4.4	
Condition	8.3	
Humidity	0.1	
Wind	3.7	

Ideal Values		
Variable	Ideal	
Temperature	70	
Dewpoint	60	
Wind	0	

Second Observation Belief Determination

Questionable Observations		
Observation	Forecast to Check	
Overcast w/ light clouds	Condition	
Partly cloudy w/ dark clouds	Condition	
Precipitation w/ visible clearing	Condition	
Warm (80s °F)	Temperature	
Cold (50s °F)	Temperature	
Humid (60s °F)	Dewpoint	
Breezy (5-14 MPH)	Wind	

Bad Conditions		
Observed	Forecasted	
Overcast	Overcast w/ dark clouds	
Lightning	Precipitation w/ no visible clearing	
Tornado	Very warm (temp >= 90 °F)	
Snow	Very cold (temp < 50 °F)	
Graupel	Very humid (dewpoint >= 70 °F)	
Sleet	Windy (wind >= 15 MPH)	

Demo

http://pi.cs.oswego.edu/~esumner/COG366WorkSite/project/index.html

Discussion

- Not perfect, BUT we accomplished our goal
- Limitations:
 - Too sensitive to changes
 - 50/50 chance of second forecast being different from observations
 - Not realistic
 - Weights used during belief revision were determined by a survey
 - Would be better to have a larger sample population
 - Forecasted conditions don't always make meteorological sense
 - Ex: Snow and 60°F

Future Work

- Maybe different approach to belief revision
 - Instead of weighting system
- Make sure forecast makes realistic sense
- See if there's any social science research as to what weather factors are more important when making decisions
 - Instead of a Google Form Survey