A First Course in Computer Programming

Skeletal Notes & Laboratory Manual (Version 2.0-F25)
Authors: CG, DS

Lecture Instructor: EW

212@
210®213
20588211 205@214
206@209 2034215
l95@207 201e204 1B89@21¢
lac@]193 1508202 1578217
l94e1a7 151e200 155e188 1652e218

192 #1395 153@186 1808219
lec @193 175>@184 178e181 139@220
le4 @167 1728176 140®179 137@22]
le2eles 155el68 171el174 141e177 135@138 132@222
160 @163 157@16a 1428172 1338136 130@223
152e161 155@158 143 @170 125®@134 125131 1l6@224
150®]153 144@]156 12z@]126 117@129 114@225
145e151 145@154 121e124 1l5e127 112e115 105@226
146 @143 115@]122 110®113 lo7 @227
66@147 93 @120 102e111 105@108 228@
L4 @67 91@34 100®103 10c@229
62 @65 S9eEsE Boesz B @95 95elol 104@230
GOMES 57 @59 57 @30 S4@56 S9@231
52e6] 55858 43870 7oeEs B2 @85 a7 @232
50@53 44856 41®71 77 @80 838233
45@51 45 @54 2he42 1) 75 @78 Gle234
46 @49 37840 34873 Fe@235
20847 29@38 32@35 74@236
l5e2] 27830 33@237
l6e13 13@22 25828 31@238
14@17 11823 268239
c@15 sel2 248240
4@7 08241
25 @242
3@243
le244

Contents

Entrance

1 Module 1: Algorithms and Algorithmic Thinking

2 Module 2: Computational Microworlds

3 Module 3: More NPW Problem-Solving

4 Module 4: Data, Variables, Types, and Expressions

5 Module 5: Superficial Signatures

6 Module 6: Shapes World Problem Solving

7 Module 7: Control Flow

8 Module 8: Methods, Functions, and Commands

9 Module 9: String Interlude

10 Module 10: Arrays

11 Module 11: The for Statement

12 Module 12: ArrayList Objects

13 Module 13: Modeling Objects with Classes

14 Module 14: Algorithms

15 Lab 1:

16 Lab 2:

17 Lab 3:

18 Lab 4:

19 Lab 5:

20 Lab 6:

21 Lab 7:

22 Lab 8:

23 Lab 9a:

24 Lab 9b:

25 Lab 10:

26 Lab 11:

27 Lab 12:

28 Lab 13:

Hello World! Hello You!
Hello Painter! Hello Composer!
Establishing a CS1 Work Site
Expressions and Shapes World Problem Solving
An Interpreter Featuring Loop Forever and Selection
Functions and Commands
String Thing
Array Play
Simple List Processing
List Processing with Streams
Establishing and Using Classes
Modeling Objects with Classes
Grapheme to Color Synesthesia

Chromesthesia

11

23

31

41

45

55

67

73

79

83

85

93

101

103

107

117

127

133

139

145

153

161

169

179

187

193

199

29 Lab 14: Fun with Fractals

Exit

30 Appendix 1: Nonrepresentational Painting World (NPW)

31 Appendix 2: Modular Melody World (MMW)

32 Appendix 3: Graphical Visualizations of the MMW Melodies
33 Appendix 4: The Stream-Processing Microworld

Resources and References

Color Compendium

209

243

245

253

259

265

271

273

Entrance

Marcel Proust on WISDOM

We do not receive wisdom, we must discover it for ourselves, after a journey through the wilderness which no one
else can make for us, which no one can spare us, for our wisdom is the point of view from which we come at last to
regard the world.

Marvin Minsky on MICROWORLDS

In doing this (working in the world of children’s blocks), we’ll try to imitate how Galileo and Newton learned so
much by studying the simplest kinds of pendulums and weights, mirrors and prisms. Our study of how to build with
blocks will be like focusing a microscope on the simplest objects we can find, to open up a great and unexpected
universe. It is the same reason why so many biologists today devote more attention to tiny germs and viruses than
to magnificent lions and tigers. For me and a whole generation of students, the world of work with children’s blocks
has been the prism and the pendulum for studying intelligence. In science, one can learn the most by studying what
seems the least.

Overview

The text you are currently reading represents a first course in computer programming that features the Java pro-
gramming language. More precisely, it substantially represents the laboratory component of the course, while only
nominally representing the presentational component of the course, and merely alluding to the programming com-
ponent of the course. What makes this course somewhat distinctive is that the approach is grounded in a number
of cognitively oriented thematic threads, namely educational microworlds, distributed cognition, and elements of the
learning sciences.

Orientation of the Lab Text

One of Seymour Papert’s many catchy observations is that in order to think about thinking you have to think about
thinking about something. The same basic idea applies to the process of learning to program. You need to write
programs about something, in the context of some domain, so that you can think about your programming and reflect
deeply upon the wide range of phenomena surrounding the programming of computers. In this text a number of
domains that are closely associated with creative acts will serve as computational contexts for programming activities
and reflections. One of the domains is music. Another of the domains is nonrepresentational art. A third domain
involves objects of chance. Modest computational learning environments associated with each of these domains
have been crafted in support of this course. A computational learning environment is simply a collection of
computational objects that are thematically related, and which collectively afford opportunities to computationally
explore domain specific ideas in particularly productive ways. By grounding your study of computer programming in
these domains, particularly music and nonrepresentational art, you will be more likely to wind up viewing computer
science as a creative activity than you would if your learning were tied to the fields more traditionally associated
with first courses in computer programming, the STEM fields of science, technology, engineering, and math. There
is a move afoot to add an A to STEM. The A in STEAM is for the arts! There is nothing new about the notion

that the arts can fuel the fire of innovation in science, technology, engineering, and math. The MIT Media lab was
founded on this premise. A number of colleges and universities embrace this idea (MIT, NJIT, and Drexel are among
the leaders in doing so), and various projects are dedicated to the proposition (for example, EarSketch). Yet there
hardly appears to be a tidal wave of enthusiasm for flavoring STEM curricula, or even first computer science courses,
with the arts. The course of study determined by this text is clearly sympathetic to those who are championing
STEAM in educational circles.

Structure of the Lab Text

The course for which this text was written is something of an inversion to the norm, in that its cornerstones are
experiences in the laboratory rather than explanations in the lecture. Both are essential, but in a significant sense the
laboratory experiences are intended to drive the course. What you do with this laboratory manual will determine, to
a large extent, the degree to which you actually realize a meaningful first course in computer science. If you merely
read it, you won’t get much out of the course. If you fully engage in the laboratories, which requires faithfully attend-
ing lectures and studiously sorting out the material presented during the lectures, in order to position yourself to be
successful with the labs, you will probably learn something substantial about the nature of computer programming.
If, in addition, you tackle each programming assignment like you mean it, and craft a program/demo archival work
site to be proud of, you could very well find that you will have taken a first step on the road to becoming a computer
scientist!

This text is structured as a sequence of skeletal outlines of presentation notes intended to be completed during
the class lectures, followed by a sequence of laboratories, all preceded by an entrance and followed by an exit. The
laboratory parts, the essential parts of this text, are intended to be held in hand. This will facilitate your engagement
in the laboratory activities. The incomplete class presentation notes are meant to remind you that you really will be
missing out on essential material should you miss a lecture. The classroom experience of declarative lectures laced
with procedural demonstrations, framed by all of the cognitive phenomena surrounding these knowledge oriented
activities, is simply not something that you can make up.

The bipartite nature of this text, the inclusion of labs and the referencing of presentations, is represented explicitly
in the table of contents. The thematic threads that permeate this text (and the course), on the other hand, find
expression in a much more implicit manner. The next three sections of this Entrance are presented in an effort to
prepare you to appreciate these thematic threads as you work your way through the course, especially when you are
doing the labs and the programming challenges.

Microworlds

A microworld is a limited collection of objects in a limited environment that can be manipulated in a limited number
of ways. Microworlds, being rather small in scope, can fairly easily be tailored to suit particular needs. Microworlds
that are easy to understand without much explicit instruction, yet which are rich enough to be interesting, can be
effective educational tools. In this text, the term microworld will mean computational educational microworld, which
simply means that the microworlds considered have been designed with learning in mind and will manifest as virtual
worlds. For most practical purposes, the term microworld can be used synonymously with the phrase computational
learning environment. Interestingly, it is considered sport, among some (skeptics of Al, in particular), to criticise
microworlds because the don’t scale up. Yet the critiques generally fail to acknowledge, much less appreciate, the
fact that microworlds are not so much intended to scale up as they are intended to help you, and your ideas, scale

up!

Two microworlds will take center stage in this course, one featuring simple geometric shapes, and the other featuring
basic musical notes. The former is called the Nonrepresentational Painting World, or NPW. The latter is called the
Modular Melody World, or MMW. A third microworld that features coins and dice, called the Chance World, will
make occasional appearances throughout the course.

Distributed Cognition

According to Roy Pea (1997), distributed cognition “is the conception of cognition as something accomplished
through collaborative interactions involving people and artifacts, as opposed to something possessed by individuals
in isolation.” Most definitions of the concept are more or less consistent with this one. Some perspective, and some
elaboration, will help to make clear how this notion plays a role in computer science, and how it will be featured in
the course for which this text was written.

Cognitive science is closely associated with the premise that cognition can best be understood in terms of represen-
tations and transformations of those representations. This is the computational/representational assumption
that serves to provide a substantial element of cohesion to the field. Cognitive science is also closely associated with
the idea that the mind can best be studied by approaching it from a diversity of disciplinary perspectives, and then
endeavoring to integrate the findings that accrue. This is the interdisciplinary assumption which adds breadth
to the field. These two foundational assumptions can be viewed as defining characteristics of traditional cognitive
science. Almost from the start, a number of individuals within the contributing disciplines to cognitive science
have been highly critical of the computational/representational assumption, suggesting that is is much too limiting
(Dreyfus, 1979; Searle, 1980; Winograd & Flores, 1987).

In words that I more or less lifted from Salomon (1997), but then heavily edited: «The proponents of distributed
cognition don’t dispute the computational/representational assumption, per se. Rather, they take issue with the
location that traditional cognitive scientists tend to ascribe to the representations and transformations that are said
to form the basis of cognition. In contrast to the theoretical stance associated with traditional cognitive science,
that cognition is in the head, proponents of distributed cognition adopt the theoretical view that cognition takes
place within a system that includes humans and tools. In the traditional cognitive science framework, cognition is
considered to be a state of being that tends to be described in terms of a rich mix of mental constructs. In the
distributed cognition framework, cognition is viewed as an emergent property of interaction among components of
the system. In other words, distributed cognition adopts a perspective for investigating cognitive phenomena
according to which cognition is equated with representation based interactions among the people and the artifacts
that make up a system.>>

The ideas associated with distributed cognition were originally proposed by Edwin Hutchins (1995). Hutchins, a
cognitive anthropologist, was a keen observer of navigation. He observed people responsible for navigating both air-
planes and ships. He was struck by how information was distributed among people and artifacts, and how no single
person was in a position to navigate the vehicle. One of Hutchins’ key insights is that the very nature of a problem
is changed when it is considered through the lens of distributed cognition. Donald Norman, a colleague of Hutchins,
adroitly made his own contributions to the theory of distributed cognition, expertly discussed the framework in pop-
ular texts, and succeeded in pointing the way towards reconceiving the foundational elements of Human-Computer
Interaction (HCI) in terms of distributed cognition. Among Norman’s most significant theoretical contributions was
his articulation of the nature and role of cognitive artifacts. A cognitive artifact is essentially a man-made tool that
is designed to enhance cognition. “The power of a cognitive artifact comes from its function as a representational
device” wrote Norman (1991). He then went on to define cognitive artifact in representational terms as “an arti-
ficial device designed to maintain, display, or operate upon information in order to serve a representational function.”

A to do list is a cognitive artifact. Such a list effectively enhances your memory. From another perspective, however,
the list merely changes the nature of what you do from referencing your memory to maintaining and checking a list.
A GPS is a cognitive artifact. It effectively enhances your ability to get from here to there. On the other hand,
neither your knowledge of navigation nor your sense of direction are improved by the GPS system. Clearly it changes
the nature of your task, not only the rational aspect of the task which amounts to searching for a desired route
through a landscape of sometimes hard to find landmarks, but also the emotional aspect of the task which tends to
be transformed from somewhat stressful ordeal to rather relaxed journey! LaTeX is a cognitive artifact that I used
for generating this text. Merely the fact that the table of contents references pages correctly is an indicator that I
can do better work with LaTeX than without it.

How is any of this relevant to the processes of learning to program computers? You will be using a range of cognitive
artifacts in support of your programming activities. IntelliJ, the integrated development environment (IDE) that is
featured in this course is an excellent example of a cognitive artifact, one that powerfully reflects Norman’s represen-
tational definition of the concept. It will help you to be a much more productive Java programmer than you would
otherwise be. The microworlds (NPW and MMW) are domain specific cognitive artifacts that will help you to do
graphics programming and sonic programming. Additionally, you will be using certain information processing tools
that will indirectly support your programming activities by enhancing your skills with respect to learning. These
information processing tools — search tools, site development tools, social media tools — are also cognitive artifacts.

Having said all of this about distributed cognition, it is important to emphasize, as Gavriel Salomon (1997) does in
“No distribution without individuals’ cognition: a dynamic interactional view,” that it is vital to value both individ-
ual cognition and distributed cognition. To effectively engage in computer programming, you want to (1) cultivate
a mix of well developed mental models, and (2) develop an ability to become one with powerful tools and systems.
Furthermore, it is worth noting that while some interactions with cognitive artifacts may fail to change the way we
think, by merely changing the nature of the problem at hand, as Hutchins so insightfully observed, other interactions
with cognitive artifacts may significantly change the way we think. In fact, computer programming languages and
computational microworlds are cognitive artifacts of this second kind, the kind that leave some sort of cognitive
residue behind in the wake of intellectual partnership.

The Learning Sciences

One body of knowledge that is increasingly finding traction among educators, especially those in higher education,
goes by the name of the learning sciences. The term learning sciences refers to a system of principles that pertain
to learning, along with investigations into the validity and utility of the principles, and explorations of interactions
among the principles. There is no one universally agreed upon set of principles, but here is a list of those learning
science principles that figured most prominently in the conception and construction of this text:

e Constructionist Principle An extension of Piaget’s constructivism — the theory that learning involves the
building of knowledge structures within the individual mind — which adds (1) the idea that “this happens
especially felicitously in a context in which the learner is consciously engaged in constructing a public entity”
(Papert, 1980), and (2) a “more distributed view of instruction, one where learning and teaching are constructed
in interactions between the teacher and students as they are engaging in design and discussion of learning
artifacts” (Kafai, 2006).

e Deep Learning Principle Education is best accomplished by privileging engagement over explanation, un-
coverage over coverage, questioning over answering, reflection over reaction, representation over information,
and process over product.

e Project-Based Learning Principle Deep learning accrues as a side-effect of engagement in an incremental,
holistic process of artifact creation in response to the consideration of a substantial problem of interest to the
learner.

e Learner-Centered Design Principle Favor bridging the “gulf of expertise” over the “gulf of execution”
and the “gulf of evaluation”. That is, place emphasis on scaffolding which affords opportunities to enhance
understanding by bridging the conceptual distance between a novice and an expert in the domain of interest,
rather than on tools or methodologies that merely ease the performance of tasks (Quintana, Shin, Norris, &
Soloway, 2006).

e Imagery Principle Educators need to search for ways in which the power of imagery (e.g., effortless structural
interpretation) can be used to support learning, creativity, and reasoning (Schwartz & Heiser, 2006).

e Inscription Principle Students learn by doing and by thinking about what they have done. Creating external
representations of one’s thoughts in some sort of inscription system for reflecting upon one’s thinking and sharing
one’s thoughts with others is of central significance to deep learning (Pea, 1993).

e Distributed Cognition Principle Cognition is something accomplished through collaborative interactions
involving people and artifacts rather than something possessed by individuals in isolation (Hutchins, 1995).

You will find unconcealed traces of these principles lurking throughout the course that this text supports, throughout
its labs and its presentations and its programming challenges. Where do they come from? They derive from the
work of some of the great thinkers about learning and education, including L. S. Vygotsky, Maria Montesori, John
Dewey, Jean Piaget, and Seymour Papert. The list that I compiled is just one possible organization of a selection
of lasting ideas about learning into a system of principles. The names that I determined to give the principles are
merely intended to make them a bit more sticky in the mind.

Tips on Learning to Learn

The aforementioned principles informed my crafting of this course, the labs, the presentations, and the programming
challenges. That is, they informed my efforts at teaching the material, by which I mean, to riff on Einstein, setting
up conditions in which my students might learn. On the other side of the teaching/learning equation, here are just
a few ideas that you might like to bear in mind as you work through this text, ideas about learning and thinking
that may resonate with you:

e The “3 Rs” of Learning — Guy Claxton Claxton (2000) references three potential habits of mind that he believes
are the mark of a good learner. The Rs stand for resourcefulnes, resilience, and reflection. Resourcefulness
is the ability to deal with challenging problems or situations in inventive ways. Resilience is the ability to
persist in pursuit of a goal in spite of uncertainty, confusion, obfuscation, or other difficulties. Reflection is
the act of looking at a thought from a strategic point of view with an eye towards confirmation, refutation,
or reformulation. (For Dewey (1933), reflective thinking has connotations of being grounded in experience, of
evaluating the quality of the thought, and of vigilantly reshaping thoughts in potentially productive ways.)

e Mindfulness — One potential habit of mind that has been getting quite a bit of press lately is mindfulness,
as championed by Ellen Langer. A mindful approach to thinking, she suggests, involves three things: a
search for new ways to classify knowledge, a disposition to appropriate new information, and an appreciation of
multiple perspectives (Langer, 1998, p. 4). The proponents of mindfulness believe that approaching cognitive
activities mindfully is a key to empowering learning.

e Metacognition — The term metacognition refers to thinking about thinking. In metaphorically eloquent words
that are a good fit for a text on learning to program, M. Martinez (2010, p. 143) asks: “How is it possible to
establish higher-order thinking as a habit - to build metacognition into our mental software as a background
application that runs continuously?” If you are serious about learning, you will do your very best to find an
answer that works for you!

e Mindset — Carol Dweck (2007), based on decades of research, contrasts the fixed mindset with the growth
mindset. By distancing yourself from the former, which tends to stifle your ability to learn by incorporating
the notion that having to work hard simply betrays intellectual inadequacies, and cultivating the latter, which
champions the belief that hard work is a catalyst for meaningful growth, you are more likely to become the
person, thinker, programmer that you would really like to be. (Dweck makes a compelling case for the growth
mindset in some of her 10 minute Youtube videos.)

How to Use this Text

This laboratory manual will help to guide you through the acquisition of some basic knowledge of computer pro-
gramming in Java using the IntelliJ integrated development environment. The labs are an integral part of the course.
Some of them introduce new material that will be elaborated during classroom presentations. Some of them serve
to clarify ideas presented during the classroom presentations. Some of them constitute the start of a programming
assignment.

—> The labs are, with the exception of just a few rather short labs, designed to be started during
your formal laborartory period, and then completed on your own.

Having the hard copy text of a lab with you will substantially enhance your laborartory experience, compared with
trying to read it from on line. So please be sure to bring the lab manual with you to each laboratory class. You

should be answering the occasional questions posed right in the manual. You should be making notes in the manual
about questions that arise in your mind as you work through the manual. You should be keeping your place in the
sequences and subsequences of tasks that define the laboratory activities by making marks in appropriate ways on
the pages of the manual. In short, you should be making your lab manual “your own”!

Not only do the labs tend to extend beyond the temporal scope of a lab period, but they extend beyond the temporal
scope of the semester. By saying this I am referring to the fact that there is at least one more lab in the manual
than will fit comfortably into the semester. Maybe two. Maybe three. This is by design. No worries. Any “extra”
labs will be featured prominently in classroom discussions. Moreover, they will serve as the basis of my first answer
to the question frequently asked by students at the end of the course: “What might I do in order to prepare for the
subsequent CS2 course?”

Technical Content Represented in this Text

Lest all of these preliminaries obscure the fact that this text really does support a CS1 course, the following partial
list of technical terms and phrases that you will find in this text, presented in no particular order, is intended to
serve as a reminder!

> array ¢ ArrayList ¢ LinkedList ¢ instance ¢ class ¢ object ¢ binding ¢ Java ¢ Emacs ¢ IntelliJ ¢ unix ¢ html ¢ css ¢
method ¢ argument ¢ parameter ¢ constant ¢ type ¢ variable ¢ int ¢ double ¢ boolean ¢ String ¢ if ¢ while ¢ for ¢ map
o filter ¢ reduce ¢ String. joino abstract class ¢ assignment statement ¢ Standard Input Stream ¢ Standard Output
Stream ¢ wigit ¢ fully parenthesized expression ¢ circumscribing circle ¢ inscribing circle ¢ circumscribing square ¢ in-
scribing square ¢ evaluation ¢ interpreter ¢ recursion ¢ parser ¢ recognizer ¢ dialog box ¢ error handling ¢ loop forever
© break ¢ multiway conditional ¢ random number generator ¢ command ¢ function ¢ stepwise refinement ¢ abstraction
¢ conditional execution ¢ length ¢ indexOf ¢ substring ¢ equals ¢ equalsIgnoreCase ¢ class ¢ extends ¢ implements
¢ string concatenation ¢ rubber ducking ¢ exceptions ¢ system properties ¢ file processing ¢ full path name ¢ array
element referencing ¢ programming by analogy ¢ type casting ¢ generics ¢ searching ¢ sorting ¢ constructor ¢ instance
variables ¢ accumulator ¢ referencer ¢ stream ¢ lambda ¢ scoping ¢ local with respect to ... ¢ global with respect to

. © “mechanical” translation ¢ deterministic ¢ nondeterministic ¢ pseudocode ¢ interface ¢ stub ¢ implementing an
interface o parallel arrays ¢ sequential search ¢ graphics processing ¢ sonic processing ¢ incremental programming ¢
symbolic computation ¢ scanner ¢ interpreter ¢ self-similar set ¢ fractal ¢ L-System ¢ algorithm ¢ invariance ¢ reuse <

Skeletal Outlines of Course Notes

1 Module 1: Algorithms and Algorithmic Thinking

This is a skeletal outline of our first module, covering algorithms and algorithmic thinking
along with some topics to get you started programming right away! It has been designed
as place for you to write notes in a structured way. There is a large margin on the right
side of the page for more free-form notes and thoughts you might have and you can always
insert more paper if needed.

Algorithms

Below, write down any thoughts you have about the introductory activity, as it’s going
on. You might want to take notes on the general procedure and how it works.

Definition. An algorithm is a step by step procedure for solving a problem.

Write down some notes about the informal specification of the algorithm as presented in
class.

Abstraction

We reduced the complexity of our explanation of selection sort by omitting some of the
details.
This allowed us to focus our attention on the essential parts of the sorting algorithm.

Definition. Abstraction, in part, is “the act or process of leaving out of consideration
one or more properties of a complex object so as to attend to others.” (Kramer, 2007)

Computer Science

There are many dimensions to computer science. One of them involves describing algo-
rithms in formal languages which can be processed by machine — programming languages.
There are two aspects we need to concern ourselves with:

e formulating algorithms to solve problems, and
e expressing our solutions in the formal language.

It’s important to learn to think like a computer scientist — you must be methodical!

Algorithmic Thinking

Definition. Algorithmic thinking is a way of getting to a solution through the clear
definition of the steps needed — nothing happens by magic.

Below, design an algorithm for crossing the street.

Technique: Problem Decomposition

Problem decomposition is the idea of “chunking” a problem into “big steps” that have
to be achieved in order to solve the problem. Sometimes the order of the “big steps”
matters, sometimes it doesn’t. Often there are many ways to accomplish the “big steps”.
An outline lists the big steps / tasks and omits the details of how to accomplish those
goals. In order words, an outline abstracts a problem into a series of subproblems and the
solution to the original problem is a composition of the solutions to the subproblems.

Below, write an outline, consisting of 3-5 steps, for your street-crossing algorithm.

Cognitive Artifacts

According to Donald Norman, a cognitive artifact is “an artificial device designed to
maintain, display, or operate upon information in order to serve a representational func-
tion.”

e In his thinking, Norman regularly emphasizes the fact that the power of a cognitive
artifact derives from its function as a representational device.

e More abstractly, it can be useful to view a cognitive artifact simply as a manmade
tool that is designed to enhance cognition.

IntelliJ IDEA

IntelliJ is a cognitive artifact. Specifically, it is an integrated development environment.

e An integrated development environment, or IDE, is a software system that helps you
to build, maintain, and distribute programs.
e Among many other things, IntelliJ provides you with:
1. text editing capabilities
2. file organizing assistance
3. an auxiliary memory for knowledge associated with programming languages and
systems

Definition. Distributed cognition employs the idea of an extended mind — cognition
1s accomplished through collaboration between a collection of individuals and artifacts and
the relations between them.

Hello World!

As we walk through the first part of Lab 1, writing the Hello World program, take some
notes below.

Reflection

After the lecture... We use algorithms all the time in daily life — recipes are a common
example of a high-level algorithm. You also know algorithms for addition, subtraction,
and many other mathematical operations. You've also likely used algorithms, though less
explicitly, for things like writing well formed essays, flossing your teeth, and even getting
dressed in the morning. Choose an every day activity and write the algorithm you use for
it!

We also use problem decomposition in our daily life, even for simple things like describing
our routines. Afterall, when you discuss your morning you say things like “get dressed,
eat breakfast, go to class” but skip the details (such as, pack a pen in your bag and put
on clean underwear). Your steps are the “big steps” and the details of how to accomplish
those steps have been omitted, so you share an outline of your morning routine. What are
some other examples where you intuitively use problem decomposition?

10

2 Module 2: Computational Microworlds

Definition. A microworld is a limited collection of objects in a limited environment that
can be manipulated in a limited number of ways.

e Microworlds, being rather small in scope, can fairly easily be tailored to suit particular
needs.

e Microworlds are easy to understand without much explicit instruction yet rich enough
to be interesting can be very useful in educational circles.

Nonrepresentational Painting World (NPW)
The Nonrepresentational Painting World (NPW) features:

e Simple shapes, including circles and squares and rectangles
e Painters that can render shapes in various ways on a virtual canvas.

In order to engage with this microworld, you need to know:

e How to create and manipulate the shapes.
e How to create and manipulate the painters.

Shapes

You can create a shape merely by asking for one and specifying a defining property for the
shape.

e To create a circle you specify its

e To create a square you specify its

e To create a rectangle you specify its and its

There are also ways to generate shapes based on other shapes, as you will soon see.

Painters

A painter has five primary properties: canvas title, two canvas dimensions,

and

)

11

The Blue Dot
Problem: In the context of NPW, paint a blue dot.

Solution: How might you paint a blue dot in the NPW? Write down the steps below!

Program: In the context of the NPW, write a Java program to paint a blue dot.

e We want to translate our conceptual solution to a Java program.
e The question is, how do we do it?

Write down some notes below about how we can translate our conceptual solution to a
Java program.

12

Our Java translation of the conceptual solution is:

e The program is “floating is space”!
o It needs to be contextualized in order for it to run!
o IntelliJ will help.

Write down some notes below about how we work with IntelliJ to turn this into a running
program!

Reflection

After the lecture... In your own words, describe the process we used to move from a
problem to a program in Java which solves it. (You might think of this as writing a rather
abstract algorithm for this type of problem solving!)

Curiosity and experimentation are a large component of building competence in program-
ming. Take the blue dot program and do something with it to make it different — maybe
you draw a square instead of a circle, maybe you change the size or the color, maybe you
add another circle. Detail below what you did and what you learned in the process.

13

NPW Mini-manual

As you learn about commands available to you in the NPW, you might consider using this
page as a place to write down their specifications and how to use them.

14

Invariance

Definition. Operator X is invariant with respect to property Y if the value of Y is the
same after X has been performed as it was before X was performed.

The concept of invariance is very important within the realm of computer science! Write
down one or more examples of invariance below. CS1 students often have trouble with this
concept - be sure to write down enough so that you know you really understand it, and so
that you can come back to it later to refresh your memory!

Modular Melody World (MMW)

The Modular Melodic World (MMW) features musical notes and compositional agents who
can help you to compose melodic sequences by piecing together modular melodic sequences.

e A modular melodic sequence is sequences of notes which are invariant with respect
to pitch and duration.

Properties of a Note

Conceptually speaking speaking, the most salient properties of a note are:

Functionality of a Note

Conceptually speaking speaking, the most salient behaviors of a note are:

15

Example 1: Create a note and use it to play a simple melodic se-
quence

With melodies it’s difficult to describe what we want our outcome to be (this is why we
use sheet music!). Below is a graphical representation of what the melodic sequence I
would like to play “sounds” like. Please note that this is merely a conceptual graphical
representation of the line. This representation is not the output of any computations. You
can listen to this melodic line on the Course Web Page.

L

Write down the steps to play this melodic sequence in the MMW.

Use your lab manual to try to figure out which commands you will use to perform each of
the above actions. Write some notes about what you find below.

16

Now, let’s convert each step from our English solution of the problem to Java.

I T o

How does our solution illustrate invariance?

Make some notes about how we worked with IntelliJ to turn the above in to a running
program!

Reflection

After the lecture... In the previous reflection you described a procedure for simple prob-
lem solving in Java using the NPW. Review what you wrote then. Would you make any
changes in light of what we’ve seen today? If you need changes, design a new version of
your procedure which captures the procedure we used both for NPW and MMW.

17

MMW Mini-manual

As you learn about commands available to you in the MMW, you might consider using
this page as a place to write down their specifications and how to use them.

18

Composers

Associated with each composer is one note.

e The composer can use this note to play a number of preformed modular melodic
sequences.

e Recall that a modular melodic sequence, is a melodic sequence that is invariant
with respect to both pitch and duration.

e The set of predefined modular melodic sequences are partitioned for ease of reference.

Types of Modular Melodic Sequences

e One set of predefined modular melodic sequences is called the “simple set” of se-
quences.

e Another set makes references to famous composers and song writers. For example,
Bach, Beethoven, Chopin, the Beatles.

e Yet another set is based on one conceptual metaphor or another. For example, one
subset of sequences is based on the “sequence=locomotion” metaphor. Another subset
is based on the “sequence=landscape” metaphor.

The Simple Modular Melodic Sequences

There are 8 predefined sequences in the set of Simple MMSs. They are named mms1, mms2,
mms3, mms4, mms5, mms6, mms7, and mms8. By way of example, here are two (represented in
terms of conceptual graphics):

mms5 —

mmsé —

An SComposer can play the predefined sequences for you; you don’t have to list instructions
for the pitch changes, durations, or notes in the predefined sequences. Instead, you ask
the SComposer to play the melody, by name, for you.

Write a note about how to ask the SComposer to play these predefined sequences for you.

19

Example 2: Create a Composer and Ask It To Do a Little Some-
thing

The following images may help you to image what the melodic line sounds like.

Write down the steps, in English, to play this melody using the simple sequences.

As before, look in your lab manual for the commands you need. You may wish to update
your MMW minimanual at the same time!

Now, let’s convert each step from our English solution of the problem to Java.

1.

- W

N o

20

Example 2: Textual Demo

If you “put a trace” on the simple composer — sc.text () — you will see textual output for
the sequence of notes played (in addition to hearing it — maybe).

run:
(c,1) /7 (@,1) \ (,2)

/ (@O,1) / E,1D \ (D,2)

/ (E,1/2) / (F,1/2) \ (E,1)

/ (F,1/2) / (G,1/2) \ (F,1)

\ (E,1) \ (D, / (E,2)

\ (O,1) \ (C,1) / (D,2)

\ (C,2) \ (B,2) / (C,4)

BUILD SUCCESSFUL (total time: 17 seconds)

Reflection

After the lecture... Think about the relationship between Composers and Notes in terms
of abstraction. Reflect on this relationship and what it means as far as how you use and
interact with each of them.

21

22

3 Module 3: More NPW Problem-Solving

Big Idea: Program Like a Tailor

To write a program that is similar to a previously written program, start with a copy of
the previously written program and then fit it to your current needs. That is, program
like a tailor!

NPW Problem: Three Circles

In the context of NPW, draw a red circle of radius 250, a blue circle one-third the size of
the red, and a green circle two-thirds the size of the red circle. Do this with the added
constraints of using just one SCircle and tailoring the Blue Dot program.

@ ® RBG Circles
,-—v"/__; o ____g.ixﬂ- e
zf" ‘\"-‘
.~"" \v.
.’" \‘\
r‘f \
,-"' e "\I
{ v Y ‘
/ 7 AN \
rll / \\ ll]
|| I,‘ ;"I)
| \
4
\ £ s /
\ L / f
1 T -~ !
\ ~— /
\ I
\\ ' v l.,‘j
N /
\ /
:f /
\ ! P .;"
\\.\ / 2
~— "

23

NPW Problem: Blue Dot — Three Circles

What’s similar about these two programs?

What will be our approach to tailoring the BlueDot program to the three rings program?

24

Below, write some notes on how we performed our tailoring in the demo.

Write the code we developed for the three circles program below.

25

Thought: The best statement sequences are short statement se-
quences!

e Even the 10 lines of the “Three Circles” program requires quite a bit of cognitive
effort to understand.

e Shorter might be better!

e How do you write shorter sequences? Abstraction is the key!

Reflection

After the lecture... Reflect on the idea of programming like a tailor. How might you use
these ideas going forward? Are there programs you've written where maybe you’'ve done
this without realizing it? Or where if you had done this it would have gone more smoothly?

26

The Traffic Light Problem

In the context of NPW, paint a yellow dot sandwiched between a green dot, just above

and just touching the yellow dot, and a red dot, just below and just touching the yellow
dot.

[JON Traffic Light

Big Idea: Stepwise Refinement

Definition. The principle of stepwise refinement is the idea, highly valued in com-
puter programming circles, that a programming problem might best be solved by writing

sequences of abstractions and then refining the abstractions, perhaps in terms of other
abstractions.

In other words, the principle of stepwise refinement dictates that you write a program by
doing the following things, in order, as needed:

1. Expressing the solution in terms of first-level abstractions

2. Refining the first-level abstractions, perhaps in terms of second-level abstractions
3. Refining the second-level abstractions, perhaps in terms of third-level abstractions
4

27

Stepwise Refinement of the Traffic Light Problem
We will begin with the tailoring idea, with a copy of the BlueDot program, and then:

Write down the conceptual description of our solution to the traffic light problem below:

cro W

I have provided the complete code for the traffic light problem elsewhere (of course, feel
free to copy it down if you like — the more you write code the more familiar it will be!) In
watching the demo, take notes on the process (including how we make use of our problem
solving strategies and abstraction), and how we can use IntelliJ to help us.

28

Powerful Ideas Featured in the Traffic Light Solution

Problem decomposition

Invariance

Principle of stepwise refinement

Working with (rather than merely using) a cognitive artifact

BARE R S

Cartesian common sense

Cartesian Common Sense
From Rene Descarte’s “Discourse on Method” (1637) ...

1. Break problems up into simpler problems, as appropriate
2. Focus on the simpler problems before you focus on the more complex problems
3. Always check your work

Activity: How to Read a Program

Using the TrafficLight program, write down the sequence of line numbers corresponding
to the order in which the statements are executed as the program runs. Since the main
method in this program is kind of weird, just begin with 35, 31, and continue on from
there. Write your answer below:

29

Write your observations from completing this activity below. What did you learn? What
was surprising?

Big Picture, How Do You Write a Program?

1. You conceptually determine what you want to do.

2. You translate your conception to a computer programming language.

Reflection

After the lecture... We continue to develop big, powerful ideas. These ideas apply to
programming, but also apply to other activities you might undertake. List the three
problem-solving techniques that we’ve discussed in Modules 1 & 2 by name and use your
own words to describe each technique. List 1-3 ways, for each technique, where you might
use the technique in your non-programming life.

30

4 Module 4: Data, Variables, Types, and Expressions

The most basic elements of a programming language include:
1. data

types
variables
constants

v N

expressions

Data and Types

Definition. Data is the stuff that computers manipulate.

Definition. There are different kinds of data elements. In computer science parlance,
these kinds of data are called types.

e int: represents whole numbers

e double: represents decimal numbers

e char: a single character, reprsented inside single quotes

e String: many characters, represented inside double quotes

e boolean: true/false values

For each value, write the type of that data element.

1. 17 7. "dog"
2. 3.14159 8. "a"

3. -44 9. "

4. 0.0 10. "1234"
5. true 11. false
6. ‘a’ 12. -4.4

Primitive vs Nonprimitive Data Types

Data types come in two varieties, “primitive” and “nonprimitive”.

e Primitive data types are inherent in the language. They are always available in the
language.

e Nonprimitive data types must be defined by someone. Some come with Java,
others are defined by ourselves or other people. With a few exceptions, they must be
loaded (imported) into your program in order to be used.

31

What are some examples of primitive data types?

What are some examples of nonprimitive datatypes?

For example... in the context of the NPW, consider the construct:

new SCircle(100)

The data type of 100 is

Is 100 primitive or nonprimitive?

e The result of the above construct is a data item of type

Is the result of the above construct primitive or nonprimitive?

Variables and Bindings

A variable is a name that is intended to be associated with a value.

When an association is established, the variable is said to be bound to the value.
When no association exists, the variable is said to be unbound.

A variable binding is an association from a name to a value.

1. int number;
Explanation:

2. number = 1;
Explanation:

3. number = 2;
Explanation:

Important - The ‘=’ thing is the binding operator, it just looks like an equals sign! I like
to read it as ‘gets’ (e.g., “number gets 1”) to help keep that straight!

32

You can declare a variable and bind it in one statement, as each of the following three
statements illustrate.

1. int number = 4;
2. String name = "Igor";

3. SCircle dot = new SCircle(number * 200);

You might imagine these bindings in the following way:

number — 4

name ———> “Igor”
o — @

1. In a strongly typed language, like Java, the type of a variable indicates the set of
values from which its value may be drawn.
2. The values of any type are also known as constants.

A couple of notes...

Type Consistency

Definition. Type consistency is about whether the value matches the defined type.

String one = 4;

int two = 4;

int three = "Monday monday";

String four = "Can’t trust that day";

-

Which lines are reasonable with respect to type consistency? Why aren’t the others?

33

Exercise: A Short Program...

public static void main(String[] args) {

int myFavoriteInteger = 1;
System.out.println("myFavoriteInteger --> " +
myFavoriteInteger) ;

int mySecondFavoritelInteger = 2;

System.out.println(myFavoriteInteger +
mySecondFavoriteInteger) ;

System.out.println("sum of integers --> " +

myFavoriteInteger + mySecondFavoriteInteger);

String songTitle = "Mood Imndigo";

System.out.println("songTitle -->

boolean absoluteTruth = false;

System.out.println("absoluteTruth --> " + absoluteTruth);

. How many variables appear in the body of the main method?

. What is the type of each variable in body of the method?

(write the variable name, followed by its type)

. Indicate the value to which each variable is bound in this method.

. Indicate the output that will be generated when this program is run.

34

+ songTitle);

Expressions

Expressions are the basic mechanism for computing values.

Definition. An expression is either a constant, a function application, or an arrange-
ment of tokens consisting of an operator and some number of operands, perhaps encapsu-
lated within a set of parentheses, where:

e cach operator is a function (a value producing computational entity), and
e cach operand is an expression.

Forms of Expressions

Expressions tend to take different forms depending upon the underlying convention for
denoting the application of an operator.

Here are the three basic conventions for operator application:

e infix: for example, (3 + 5)
e prefix: for example, (+ 3 57 9)
e postfix: for example, (3 57 9 +)

Evaluation

e The value of an expression is the result obtained by applying the operator to the
values of its operands.

e In other words, the operands are evaluated, and the operator is then applied to the
values of the operands.

e This scheme of evaluation is called standard form evaluation.

In evaluating these expressions, assume that each function does the obvious thing, and
that the variable is bound to the number 35.

1.(3*x(2+6))—

2. 10 —

3. (sqrt(100) / 2) —

4. (x-(x/5))—

5. ("one plus one = " + "two") —

6. ("answer = " + (x +5)) —

35

Fully Parenthesized Expressions

Definition. A fully parenthesized expression is an expression for which there is ex-
actly one set of parentheses corresponding to each operator.

Write down some example fully parenthesized expressions:

Write down some example NOT fully parenthesized expressions:

The line of code below appeared in our example program, but produced the wrong print
out. Rewrite the line of code with parentheses so that the printout is as the label indicates.

System.out.println("sum of integers --> " + myFavoriteInteger + mySecondFavoritelInteger) ;

36

The Crypto Problem

Given a set of NV integers called numbers within some range of integers, and given another
integer, called goal, within the same range of integers, write a fully parenthesized arith-
metic expression using all of the numbers in numbers, and N — 1 operators drawn from
{+, =, *, /}, with replacement, that evaluates to the goal. Some examples:

1. Problem: numbers {7, 3}, goal 4

Solution:

2. Problem: numbers {3,7,5}, goal 2

Solution:

3. Problem: {3,7,5,7}, goal 1

Solution:

4. Problem: numbers {9,10, 11,12, 13}, goal 8

Solution:

5. Problem: numbers {2,4, 6, 8}, goal 4

Solution:

6. Problem: numbers {2,3,5,8,9}, goal 8

Solution:

Reflection

Reflect upon your solutions, and the thought processes that led you to them. What is
the most interesting thing that you can say about your thinking with respect to these two
problems?

37

0O Ui Wi+

O R R R R R R R L0 0 0 W W W W W LW LWRN) NN DN DD DN DN DN DN R e e e e e
COJT OO U WNHFHF OOWWTITDDUk WD OO Ulkr W O OO0 Utk WNFEOO

Example: The DataPlay Program

We will be going over the below example in class. Be sure to annotate this code with your
own notes!

/ *

* This program is meant to illustrate concepts related to data,

* and expressions along with input and output.

*/

package demos;

import java.util.Scanner;

public class DataPlay {

public static void main(String[] args){

Scanner scanner = new Scanner (System.in);

System.out. ")

int numl =

print ("Enter an integer:
scanner .nextInt ();

System.out. ")
int num2 =

print ("Enter a second integer:
scanner .nextInt ();

System.out.println("The values of the read integers
System.out.println("numl --> " + numl);
System.out.println("num2 --> " + num2);

/% % sk sk sk ok ok ok ok ok sk ok ok sk ok ok ok sk ok ok ok ok sk ok ok ok ok ok ok ok ok ok sk sk ok ok ok ok ok ok ok sk sk ok ok ok ok ok K ok ok
We will now experiment with computing the values of

some expressions using the two integers we entered.
ok ok ok ok ok ok sk sk sk ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok sk sk sk sk sk ok ok ok ok ok sk ok sk ok ok ok ok ok ok K ok ok ok ok ok %k /

// Sum of two numbers
int sum = numl + num2;

System.out.println("Sum of the numbers: "

+ sum);

// Product of two numbers

int product = numl * num2;

System.out.println("Product of the numbers: "

// Integer quotient of the two numbers

int integerQuotient = numl / num?2;

System.out.println("Integer quotient of the numbers:
+ integerQuotient);

// Integer quotient of the two numbers (again!),

// but storing in a double

double doubleQuotient = numl / num2;

System.out.println("Integer quotient using a double:
+ doubleQuotient);

38

+ product);

types,

variables,

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
(0]

// True quotient of the two numbers

double trueQuotient = (double)numl / (double)num2;

System.out.println("True quotient of the numbers: "
+ trueQuotient);

// The remainder of integer division, the modulus operator
int mod = numl % num?2;
System.out.println(numl + " modulo " + num2 + " = " + mod);

// The real average of the two numbers

double average = ((numl + num2) / 2.0);

System.out.println("Real average of the two numbers: "
+ average);

// The area of a circle whose radius is the

// difference of the numbers

double radius = Math.abs(numl - num2);

double area = Math.PI * Math.pow(radius, 2);

System.out.println("The area of the circle with radius: "
+ radius + " is: " + area);

// What is this?

String pair = "(" + numl + ", " + num2 + ")";
System.out.println("pair --> " + pair);
}

}

Output

Enter an integer: 9

Enter a second integer: 2

The values of the read integers are:

numl --> 9

num2 --> 2

Sum of the numbers: 11

Product of the numbers: 18

Integer quotient of the numbers: 4

Integer quotient of the numbers using a double variable: 4.0
True quotient of the numbers: 4.5

9 modulo 2 =1

Real average of the two numbers: 5.5

The area of the circle with radius: 7.0 is: 153.93804002589985
pair --> (9, 2)

39

40

5 Module 5: Superficial Signatures

The superficial signature of a fragment of Java code is the fragment of code with all
literals and variable references replaced by the name of their least general type enclosed
in a box, if writing by hand, or delimited by dollar signs, if typing on a machine.

The name “superficial signature” derives from the fact that the focus of attention when
contemplating superficial signatures is on programming language tokens. But don’t be
fooled — the goals of practicing superficial signatures are to make you a better reader of
Java code and to help you identify types correctly.

Examples

Below is a fragment of “familiar” Java code.

int myFavoritelnteger = 1;
System.out.println("myFavoriteInteger --> " + myFavoriteInteger);

int mySecondFavoriteInteger = 2;
System.out.println(myFavoriteInteger + mySecondFavoriteInteger);
System.out.println("sum of integers --> " + myFavoriteInteger + mySecondFavoritelInteger);

String songTitle = "Mood Indigo";
System.out.println("songTitle --> " + songTitle);

boolean absoluteTruth = false;
System.out.println("absoluteTruth --> " + absoluteTruth);

Let’s take a few of the lines and walk through how to write the superficial signature of
each one.
1. int myFavoriteInteger = 1;

In this line, the variable myFavoriteInteger is being declared — not referenced! —
so we do not replace that with its type. However, the value 1 is a constant so that
needs to be replaced with its type. Thus the superficial signature of this line of code
is:

int myFavoritelInteger = int;

2. You do the next few lines — they are very similar to the last one!

(a) int mySecondFavoriteInteger = 2;

41

b) String songTitle = "Mood Indigo";
g g g

(c) boolean absoluteTruth = false;

. System.out.println("myFavoriteInteger --> " + myFavoriteInteger);

This line has three tokens to replace. The String literal "myFavoriteInteger —--> "
should be pretty easy to spot. The variable myFavoriteInteger is being referenced
here because in order to print it, the value is needed. But the third token is out, of
type PrintStream. This is a new kind of variable for us so be sure to take note!

System.$PrintStream$.println($String$ + int);

. Again, practice this with a few similar lines.

(a) System.out.println(myFavoriteInteger + mySecondFavoriteInteger) ;

(b) System.out.println("sum of integers --> " + myFavoriteInteger + mySecondFavoritelnteger);

(c) System.out.println("songTitle --> " + songTitle);

(d) System.out.println("absoluteTruth --> " + absoluteTruth);

42

More Java Code for Superficial Signatures

SPainter cassatt = new SPainter("Blue Dot", 800, 800);
Scanner sc = new Scanner(System.in);

System.out.print ("Enter an integer radius: ");
int radius = scanner.nextInt();

SCircle dot = new SCircle(radius);

cassatt.setColor(Color.BLUE);
cassatt.paint(dot);

We'll do the next set of superficial signatures together, but be sure to take notes about
why the superficial signature for each line is what it is — you want to be able to write out
superficial signatures for similar lines on your own.

5. Scanner scanner = new Scanner (System.in);

6. System.out.print("Enter an integer radius: ");

7. int radius = scanner.nextInt();

8. SCircle dot = new SCircle(radius);

9. cassatt.setColor(Color.BLUE);

10. cassatt.paint(dot);

43

44

6 Module 6: Shapes World Problem Solving

A great deal of computer science is about problem solving: writing programs which solve
problems, and solving problems associated with writing your programs.

When we solve problems featuring shapes that do not entail the rendering of the shapes
graphically, we will agree that we are engaging in “Shapes World Problem Solving”.

Some Preliminaries...

List the three problem-solving techniques that we discussed in Modules 1 - 3, as a reminder.
If you can think of other guiding principles, write those in the margin.

Draw below on the right side what is meant by the circumscribing circle of a
square. Make yourself a note about how you can remember what this means!

Draw above on the left side what is meant by the inscribing circle of a square. Make
yourself a note about how you can remember what this means!

45

NPW has some functionality available to us related to these concepts!

e SSquare.circumscribingCircle() — SCircle
return the circumscribing circle of the square

e SSquare.inscribingCircle() — SCircle
return the inscribing circle of the square

Write some notes below about what these mean! (This is a point of common confusion, so
take care to understand fully and make notes for yourself to help you recall later!)

Code for the “Circumscribing Circle of a Square” image...

SPainter painter = new SPainter("Circumscribing Circle",600,600);
SSquare square = new SSquare(200);

SCircle circle = square.circumscribingCircle();
painter.draw(square) ;

painter.setBrushWidth(3);

painter.draw(circle);

Code for the “Inscribing Circle of a Square” image...

SPainter painter = new SPainter("Inscribing Circle",600,600);
SSquare square = new SSquare(200) ;

SCircle circle = square.inscribingCircle();
painter.draw(square) ;

painter.setBrushWidth(3);

painter.draw(circle);

Remember, when I give you chunks of code like this be sure that you understand every
line. Make notes about what things do if you didn’t previously understand them!

46

Reminder: Problem Decomposition

Definition. Problem decomposition is the problem solving strategy of decomposing a
problem into a set of subproblems, solving each of the subproblems, and then composing a
solution to the original problem from the solutions to the subproblems.

Problem: Area of Scrap

Imagine that a disk of maximal size is cut from a square piece of tin of side 20.0 units,
leaving some scrap behind. What is the area of the scrap? Use the technique of problem
decomposition to solve!

0 ® Area of Scrap of Tin Problem Picture

Conceptual Solution

Recall our problem solving strategy from module 1! We first need a conceptual solution
before we can write a program to solve a problem!

Problem: find the area of the scrap.

47

Thought: If we knew the area of the square, and we knew the area of the inscribing circle,
we could calculate our answer.

Subproblems:

1.
2.

Then, our overall solution can be thought of as...
Solution(Problem) = Solution(Subproblem1) — Solution(Subproblem2)

Example: For a square of side length 20: (work this one out by hand!)

Structure of Problem-Solving Code

All of our problem-solving in the Shapes World setting will have code developing a com-
putational solution that follows this basic structure:

1. Create variables to store each given value.
2. Create objects with which to think.

3. Create variables to store the answers to the subproblems, and calculate
those answers with the objects.

4. Create a variable to store the final answer.

5. Print the final answer, with a clear label.

48

Computational Solution to the Scrap of Tin Problem

Now we can develop our program! Write it below, along with notes about what we’re doing
and why!

Demo

run:
area of scrap = 85.84073464102067
BUILD SUCCESSFUL (total time: O seconds)

NOTES:

e There usually isn’t an SPainter — you aren’t painting a picture, but using shapes
to get numbers.

e If you are using mathematical formulas, you probably are working too hard!! Let the
objects and their functionality replace the need for formulas.

e Place all of your code in a main method, since for most of these problems the calcu-
lations turn out to be pretty short once you know how to solve the problem.

Technique: Imaginative Construction

Definition. Imaginative construction is the problem solving strategy of imagining and
object, not readily apparent in the problem situation, that can be used to help solve the
problem, constructing the object, and then using it to solve the problem.

49

Problem: Area of the Diamond

A pink square has side length 195in; inside is a blue diamond with points that are 30in
from the midpoints of the sides of the pink square. What is the area of the blue diamond?

We need an object that can model the blue diamond — but we can’t use a formula to figure
out its side length and create an SSquare for the blue diamond directly. What invisible
shape is between the blue diamond and the pink square?

Conceptual Solution

50

Computational Solution

Now we can develop our program! Write it below, along with notes about what we’re doing
and why!

Demo

run:
The area of the blue diamond is 36450.0 square inches.
BUILD SUCCESSFUL (total time: O seconds)

o1

Problem: The Envelope

What is the distance from the midpoint of one short side of a rectangular envelope to an
opposite corner, assuming the envelope’s height is 4 inches and its width is 9 inches?

Below, draw a picture representing the envelope and the distance we’re trying to find.
(When you have a problem like this, one of your first thoughts should always
be to draw a picture!)

Conceptual Solution

Situation:

Construction:

Solution:

52

Computational Solution

Now we can develop our program! Write it below, along with notes about what we’re doing
and why!

Demo

run:
distance = 9.219544457292887
BUILD SUCCESSFUL (total time: O seconds)

53

Reflection

After the lecture... We still continue to develop big, powerful ideas that apply to computer
science and programming, but also other areas of your life. List all four of the problem-
solving techniques that we have discussed in Modules 1, 2, and 4. Separately, list other
useful techniques or guiding principles. Write down examples, for each technique or idea,
where you have used the technique or idea in your programming challenge assignments
thus far.

54

7 Module 7: Control Flow

The flow of control in a program is governed by:

At some point in life you may hear of the Structured Program Theorem (or B6hm-
Jacopini Theorem) — it says that these three things are all you need to compute anything
which is computable.

Selection

The basic mechanisms of selection in Java are:
e the IF-THEN statement

e the IF-THEN-ELSE statement
e the MULTIWAY-IF statement

The IF-THEN statement

When is the IF-THEN statement used?

The form of the IF-THEN statement (somewhat simplified) is...

if (predicate) { statement-sequence }

Definition. A predicate is a boolean valued (truth valued) expression.

This means that...

e If the predicate evaluates to true, then

e If the predicate evaluates to false, then

95

For example, assume that n is bound to an integer value. Write an IF-THEN statement to
print the word POSITIVE on one line and the value of n on the next line, if the value of n
is positive.

Write the code below:

The IF-THEN-ELSE Statement

When is the IF-THEN-ELSE statement used?

The form of the IF-THEN-ELSE statement (somewhat simplified) is...

if (predicate) { statement-sequence }
else { statement-sequence }

This means that...

e If the predicate evaluates to true, then

e If the predicate evaluates to false, then

For example, assume that n is bound to an integer value. Write an IF-THEN-ELSE statement
to:

e print the word POSITIVE on one line and the value of n on the next line, if the value
of n is positive

e otherwise, print the word NON-POSITIVE on one line and the value of n on the next
line

56

Write the code below:

The MULTIWAY-IF Statement

When is the MULTIWAY-IF statement used?

For example, assume that n is bound to an integer value. Write a MULTIWAY-IF statement
to:

e print the word POSITIVE on one line and the value of n on the next line, if the value
of n is positive

e print the word NEGATIVE on one line and the value of n on the next line, if the value
of n is negative

e print the word ZERO on the line, if the value of n is 0.

Write the code below:

o7

This problem has multiple solutions. Write a little note about that below.

Take a look at the following code that includes a MULTIWAY-IF statement, which is in a
class that also has the required infrastructure for painting.

SPainter klee = new SPainter("What’s your color?", 600, 600);
SCircle dot = new SCircle(200);

Scanner sc = new Scanner (System.in);

System.out.print ("Enter 1 for Blue, 2 for Pink, or 3 for Green. Your choice:

int n = sc.nextInt();

if (n == 1){
klee.setColor(Color.BLUE);
klee.paint(dot) ;

} else if (n == 2){
klee.setColor(Color.PINK);
klee.paint(dot);

} else if (n == 3){
klee.setColor(Color.GREEN) ;
klee.paint(dot);

1. What do you expect to happen if the user enters 27

2. What would happen if the user enters 47

3. What should happen if the user enters 47

Take notes from the conversation in class about this question,
and how we adapt the code to address this concern.

58

ll);

Iteration

Definition. Iteration is the act of repeating a process, with the intention of generating
a sequence of outcomes (actions or values).

Iteration can be realized in a number of ways. In Java, the main ways are:

1. the for statement
2. the while statement (subsumes for)
3. recursion (subsumes while)

The while Statement

The while statement has the following form:
while (predicate) { statement-sequence }
The meaning of this is that the computer should:

Evaluate the predicate. If it evaluates to true, execute the statement sequence, and then
do this (beginning with the predicate evaluation) all over again.

Write down the example while statement below:

59

What does it do?

Write down a note about the second example while statement.

Headers and Trailers

e A header is a metadata item that indicates how many data items will be processed.

e A trailer is a metadata item that indicates that the end of a stream of data items
has been reached. (There must be a range restriction on the data in order for a trailer
situation to be applicable.)

60

e A loop (repetition construct) involving a header is a

e A loop (repetition construct) involving a trailer is a

Simple Programming Problem Comparing Headers and Trailers
While Using a while Statement

Problem: Write a program that prompts for and reads positive integer values, computes
the real average of those values, and then prints that average with a label.

This problem can be approached by using a header or a trailer, depending on the context in
which the programmer is working. Let’s start by setting the stage for when a header would
be very appropriate. Suppose the problem had the added constraints in the statement
below.

Write a program to:

1. Prompts for and reads a positive integer which indicates the number of data items to
be processed (a header)

2. Reads the specified number of integer values

3. Prints, labelled, the real average of the data

For example:

Number of numbers? 5
Please enter 5 integers
83692

average = 5.6

We will write the below code in class. Brainstorm here how you would write the program.

61

/*
This program asks the user to enter some integers and averages them. It is
meant to illustrate the use of headers (a counter controlled loop).

*/

package demos;

import java.util.Scanner;
public class AverageWithHeader {

public static void main(String[] args) {
// GET READY TO READ SOME NUMBERS FROM THE STANDARD INPUT STREAM
Scanner scanner = new Scanner (System.in);
// PROMPT FOR AND READ THE HEADER
System.out.print ("Number of numbers? ");
int nrOfNumbers = scanner.nextInt(); // READ THE HEADER!
// READ THE NUMBERS AND COMPUTE THEIR SUM - USE AN ACCUMULATOR

System.out.println("Please enter " + nrOfNumbers + " integers ...");
int sum = O;
int i = 1;

while (i <= nrOfNumbers) {
int number = scanner.nextInt();
sum = sum + number;
i=1i+1;
}
// COMPUTE THE AVERAGE
double average = (double)sum / (double)nrOfNumbers;
// DISPLAY THE RESULT
System.out.println("average = " + average);

Don’t forget to make notes about different parts of the program and how it all works!

On the other hand, suppose the problem were put in a slightly different context ...

Write a program to:

1. Prompts for and reads a list of positive integers
2. Prints, labelled, the real average of the data

In this problem, we can’t assume that the computer will be told in advance of starting to
read in the integers how many to expect. It may be the case that the number of data values
is not known, even, until after the stream of values concludes.

62

Here we have to decide how the list of entered values must end — we need a trailer to
tell the computer “the list is over.” But, because are using a Scanner to read the data,
as in the last program, we need to make sure that the type of the trailer is the same as
the type of the data. So we have to decide on an int to use as our trailer that won’t be
misinterpreted as a number on the list ...and then write the code.

For example:

Please enter a list of non-negative integers, followed by -1.
83692-1
average = 5.6

Here is the code that I wrote to solve this problem. Take notes on the differences between
this program and the AverageWithHeader program — what parts of the while loop change
with the trailer? What changes are needed for the computation of the average?

/*
This is a program that asks the user to enter some integers and averages them.
It illustrates the use of trailers (a data-controlled loop.)

*/

package demos;

import java.util.Scanner;

public class AverageWithTrailer {

public static void main(String[] args) {
// GET READY TO READ SOME NON-NEGATIVE NUMBERS FROM THE STANDARD INPUT STREAM
Scanner scanner = new Scanner (System.in);

// PROMPT FOR AND READ THE NUMBERS WITH TRAILER -1
System.out.println("Please enter a list of non-negative integers, followed by -1.");
int num = scanner.nextInt();

// Set up the accumulator, sum, and also a way to track the number of integers.
int sum = O;
int nrO0fNumbers = 1;

// READ THE NUMBERS AND COMPUTE THEIR SUM
while (num !'= -1) {
sum = sum + num;
num = scanner.nextInt();
nr0fNumbers = nrO0fNumbers + 1;
}
// COMPUTE THE AVERAGE
// Note that nrOfNumbers counted the trailer, so we have to
// reduce it by one to get the actual average.
double average = (double)sum / (double) (nrOfNumbers - 1);
// DISPLAY THE RESULT
System.out.println("average = " + average);

63

Simple Programming Problem Featuring a while Statement

Write a program that:

1. Reads some number of words followed by the sequence ###
2. Computes and prints the average word length of all of the words

For example:

Please enter some words followed by ###
bird on a wire ###
average word length = 2.75

We will write the below code in class. Take notes here about all of the parts which are new
to you!

/*
A program to compute the average length of several words read through
the standard input stream.

*/

package textprocessing;

import java.util.Scanner;
public class AverageWordLength {

public static void main(String[] args) {
// GET READY TO READ SOME WORDS FROM THE STANDARD INPUT STREAM
Scanner scanner = new Scanner(System.in);
// PROMPT FOR SOME INPUT
System.out.println("Please enter some words followed by ###");
// PREPARE TO COMPUTE THE AVERAGE WORD LENGTH
int nrOfLetters = 0;
int nr0fWords = O;
String input = scanner.next();
while (! input.equals("###")) {
nrOfLetters = nrOfLetters + input.length();
nr0fWords = nrOfWords + 1;
input = scanner.next();
}
// COMPUTE AND DISPLAY THE RESULT
double awl = (double)nrOflLetters / (double)nrOfWords;
System.out.println("average word length = " + awl);

Does the program AverageWordLength feature a
counter-controlled loop or a data-controlled loop?

64

Reflection

After the lecture... reflect on what we did in Module 1 developing algorithms in light of
the constructs you’ve learned of here. Pick out examples of places where our informal
algorithms used sequencing, selection, and iteration and write about them below.

Superficial Signatures Revisited

For each line of code from AverageWordLength, provide the superficial signature.

1. int nrOfWords = 0;

2. String input = scanner.next();

3. nrOfLetters = nrOfLetters + input.length();

4. nr0fWords = nr0fWords + 1;

5. System.out.println("average word length = " + awl);

65

Example Java Code

int sum = O;
Die lucky =
int i = 1;
while (i <=5) {
lucky.roll();
sum = sum + lucky.topQ);
i=1i+1;

new Die();

3

System.out.println("The sum of the roles is " + sum);

Superficial Signatures Questions

1. int sum = O;

2. Die lucky = new Die();

3. int i = 1;

4. while (i <=5)

5. lucky.roll();

6. sum = sum + lucky.top();

8. System.out.println("The sum of the roles is " + sum);

66

8 Module 8: Methods, Functions, and Commands

Definition. A method is a unit of computation that may or may not take inputs in the
form of parameters and that may or may not return a single value.

Gross Anatomy of Method Definitions

e A method definition (whether it defines a function or a command) consists of a
“method header” followed by a “method body”.

e The header of a method definition consists of all of the tokens (i.e., parts of
syntax) that precede the initial left brace.

e The body of a method definition consists of all of the tokens from the initial left
brace to its corresponding right brace.

[Metood Weader |[Meader -
pvivore static double area (n\ouh\e radius)\{

= dovbe radiusSquared = Math. pow (radivs, 2]
Stode o Seqhuenuz Jovvle aregq =aDMo.w,,91 # rgdws 5% j
3 refuen e
Metvod Boo\j b § V\CH{\Od ij__,

One way to distinguish methods from classes is that methods have parentheses in the
header — like public void paintTheImage() or public void blueDot () versus public
BlueDot. Another way is the convention that method names start with a lower case
letter and class names are capitalized.

Method Headers

A method header can be further broken down into component tokens: modifiers, return
type, method name, and parameter list.

Methodt Header Detail

pasawmete)) st

access . ophorad i rehen) ncaivaie Sl
mochifiers ! w\ooltrrﬁejus ' ‘t:}\x “ﬂamL ! (?afamhM)
L N ‘ :
' \ |
wade or stofic,
Pr\?ub\\o ‘

e Some modifiers are optional. Most of the time, you need to specify an access modifier
(public versus private) that determines what other classes and methods have access
to the method being defined — just other methods inside the class, or other classes
entirely. In CSC 241, students learn a lot about modifiers.

67

The return type must be specified. If nothing is being returned, the return type is
void. If a variable is being returned, for access outside the method, then the type of
that variable is the return type in the header.

Each parameter in the parameter list is specified in the format

type abstractNameToUse

and parameters are separated by commas.

When a method is called, you insert a specific variable name or constant — we call
those arguments to denote the difference between the specific versus the abstract,
generic variable used in the method definition.

(Think f(x) = 22 versus f(3) = 3%2 =9 from your math classes — x is the parameter,
f(z) is the method definition, but 3 is one of many arguments that can be passed to

f)

Questions on the Anatomy of the Example Method Definitions

There are four methods defined on the next page. Answer these questions about those
methods, after reviewing the methods.

How many tokens in the header of the area definition?

How many statements in the body of the area definition?

How many tokens in the header of the britishIsm definition?
How many statements in the body of the britishIsm definition?
What is the return type of area?

What is the return type of britishIsm?

How many parameters does the area definition have?

How many parameters does the randoDot definition have?
What is the type of the parameter for approxSine?

What is the type of the parameter of britishIsm?

68

Sk W N~

[\)

0~ O ULk W N

el e el e
O Ul W~ OO

18

Examples of Methods

It’s not a bad idea to ask yourself whether or not each method will take all values that
are possible for each parameter and whether or not the method will produce the intended
result for all values that it takes. You might also ask whether or not a method relies on
other methods being present in the same class, or other classes.

area

private static double area(double radius) {
double radiusSquared = Math.pow(radius,2);
double area = Math.PI * radiusSquared;
return area;

3

britishIsm

private static void britishIsm(String word) {
System.out.println("Keep calm and " + word + " on.");

}

approxSine

private static double approxSine(double angle) {
double approxSine = O0;
if (angle > 0) {
if (angle < 180) {
double complement = 180 - angle;
double numerator = (4xangle*(complement));
double denominator = (40500 - (angle*complement));
approxSine = numerator / denominator;
} else if (angle < 360) {
double complement = 360 - angle;
double reducedAngle = angle - 180;
double numerator = (-4*(reducedAnglex*(complement)));
double denominator = (40500 - (reducedAngle*complement));
approxSine = numerator / denominator;
}
}
return approxSine;

}

randoDot

private static void randoDot (String canvasName, int canvasSize) {

SPainter painter = new SPainter (canvasName, canvasSize,canvasSize);

double dotRadius = (canvasSize / 3.0);
SCircle dot = new SCircle(dotRadius);
painter.setColor (randomColor ());
painter.paint (dot);

}

69

Functions and Commands

Definition. A method that returns a value, but performs no other actions that are per-
ceivable in its environment, is called a function.

Definition. A method that performs some perceivable action in its environment, but that
does not return a value, is called a command.

There are methods that are neither a command nor a function — can you think of a method
that returns a value and makes perceivable changes??

List some of the “perceivable actions” to look for when determining if a method is a
command.

Practicing Identifying Functions and Commands

1. Which of the example methods are commands? Which are functions?
Label each example method as function, command, or neither.

2. For each method listed, look up the method in the Appendices of the
lab manual and determine if the method is a function, command, or neither.

o SPainter.draw() ;

o SCircle.radius();

e SSquare.shrink() ;
SSquare.x2() ;
e SNote.play();

3. For each method listed above, identify the return type.

4. Which of the methods listed above takes a parameter?

70

Questions on an Example Function Definition: area.

10.
11.

12.

13.

What do you think the area function does?

What would area(1.0) evaluate to?
How many arguments are passed to the area function?

How many parameters does the area function take?
(Hint: there is a one-to-one correspondence between arquments passed
in a function call and parameters taken in a function definition.)

What is the type of the parameter in the definition of the area?

What is the name of the parameter in the definition of the area?

What is the type of value returned by the area function?

How do you know the answers to the previous three questions?

Do you think that pow is a function? Why or why not?

Who do you think “possesses” the pow function?

How many arguments are passed to the pow function? How do you know?

What are the types of the parameters that are received by the pow function? Youl
can verify by (1) typing “Java Math” into Google, (2) Clicking on the first link
that comes up, and (3) reading the documentation.

Who do you think “possesses” the area function?

71

Questions on an Example Command Definition: britishIsm.

10.

11.
12.

13.

What would britishIsm("read") do?

How many arguments are passed to the britishIsm command?

How many parameters does the britishIsm command take?
(Hint: there is a one-to-one correspondence between arquments passed
in a function call and parameters taken in a function definition.)

What are the types of the parameters in the definition of the britishIsm method?

What are the names of the parameters in the definition of the britishIsm|
method?

Is there a value returned by this method?

Can you tell, just by looking at the method header, the answers to the preceding
three questions?

Do you think that println is a command? Why or why not?

Who “possesses” the println command used in this program? You might like to|
play Sherlock Holmes, and (using Google) investigate!

How many different println methods does this possessor possess?

How many arguments are passed to the println command? How do you know?

What is the type of the argument that is received by the println command used
in this program?

Who do you think “possesses” the britishIsm command?

72

9 Module 9: String Interlude

We regard String as a primitive data type, but it has features of non-primitive data types.
Specifically, String variables have methods associated with them and these methods are
incredibly useful for cutting down on your tedious work.

A Few Methods Associated With Strings

e charAt(int index) — char
returns the char value at the specified index
e equals(String anotherString) — boolean
returns a boolean describing whether or not anotherString is the same as
the String calling the method
e equalsIgnoreCase(String anotherString) — boolean
as with equals but now ignoring case
e index0f (char ch) — int
returns the index of the first occurence of the specified character
e index0f (char ch, int fromIndex) — int
returns the index of the first occurrence of ch on or after the index fromIndex
e length() — int
returns the length of the string
e substring(int markerIndex) — String
returns a String that is a substring of the one calling the method, starting
after the markerIndex and continuing until the end of the string
e substring(int beginIndex, int endIndex) — String
returns a String that is a substring of the one calling the method, starting
at beginIndex and ending at endIndex
e toLowerCase() — String
modifies the String by converting all characters to lower case
e toUpperCase() — String
modifies the String by converting all characters to upper case

Example: "The quick brown fox jumps over the lazy dog."

Let’s say we have a String storing the text above.
String sentence = "The quick brown fox jumps over the lazy dog.";

To find the index of the >z’ in sentence, we would declare an int with a descriptive name
to store the returned value, and call on the index0f method.

int zIndex = sentence.index0f(z);
We can find and print the length of sentence with a simple line of code, too.

System.out.println("Length of sentence: " + sentence.length());

73

Tasks to complete with sentence

Assuming that the String variable sentence has been declared and bound as in the line
of code below, complete the tasks that follow.

String sentence = "The quick brown fox jumps over the lazy dog.";

1. What lines of code would return and print, nicely labelled, the index of the *>j’?

2. Write a few lines of code to introduce a String variable named pet and bind it to
the substring of sentence that is a word for a common domestic pet.

3. Write a few lines of code, without any counting, to introduce a String variable named
creature and bind it to the substring of sentence that is the word for a common
undomesticated animal.

4. Write a line of code to make creature all upper case.

74

String Manipulations

Suppose that the following String variable has been declared and bound as shown.

String library = "Holes - Louis Sachar, The Princess Bride - William

Goldman, Ender’s Game - OrsonScott Card, Hatchet
- Gary Paulson, Harold and the Purple Crayon -
Crockett Johnson";

Our goal is:

e Create 3 variables of type String named fiction, fantasy, and scifi to store the

title of a book and the author’s last name in the format shown below.
Title (LASTNAME)

We only plan to do this for the first three books listed in 1ibrary, but you can imagine
needing to do this when reading information out of a file, such as a spreadsheet or
database, and needing a loop to repeat the process. We will just outline the procedure
for three books to get a sense of the process.

If we have time, we will also create a few methods to compare “book info strings” like the
ones created above. In particular, our goals would be to determine whether or not two
books have the same author and to determine whether or not a given book’s author comes
alphabetically before another book’s author.

Creating “book info strings”

1. See how the books are separated by commas in 1library? We’ll use the commas as a

way to “splice up” the String. First, though, we need a way to store the position of
the commas.

. Then, we need to store each book’s info, even though the info is in the wrong format.
Be very careful to pay attention to how the substring method works ...we do not
want extra punctuation in our strings!

. Now we need a place to store each book’s title. But, this means that we need a way
to know where the title ends! What special character will “mark” the end of the title?
How do we find its position within our strings?

(0]

4. That was so tedious!! We did the same thing, three times. Let’s write a method that
does this thing for us, so that we can cut down on the time investment.

5. Let’s now figure out how to create a string with just the author’s last name in upper
case, working just with one of our strings. After we do this part, we’ll use it as a
template to make a method that will work on all wholeBook strings.

6. Now, for the method!

7. Let’s finally write a method to take in our book title strings and author last name
strings, returning a string with the final format.

Write a few notes about our procedure, anything that you might not remember when
returning to this handout later on. Jot down anything persnickety or finicky about the
process so that you don’t trip up in that same place in the future when working with
String variables.

76

Additional Methods

This page is left mostly blank so that if we have time, we can write a few methods to work
with our “book info strings”. Specifically:

e Write a method that takes as input two String variables in the same format as our
“book info strings” and returns true if the two books represented in the arguments
have the same author and false otherwise.

o Write a method that takes as input one String variable in the “book info string”
format and returns a String with just the author’s last name in upper case.

o Write a method that takes as input two String variables in the same format as our
“book info strings” and returns the String with the author that comes alphabetically
first.

7

78

10 Module 10: Arrays

An array stores some number of items of the same type.

An array:
e has a name,
e contains some number of items, called elements, and

e allows accessing elements by using the name and appropriate index wrapped in square
brackets — [].

Example: The primes Array

Let’s say we have an array containing the first four prime numbers, called primes:

primes[0]
primes[1]
primes[2]
primes[3]

Be sure to write some notes about what the above means!

What is the output if we asked Java to print primes[0]?
What is the output if we asked Java to print primes[3]7

Indices and Bounds

If we consider our primes array, we would say the length is and the maximum index
is

An array has indices from to
If we were to refer to primes[4] or primes[16] we would be in trouble!

Make some notes below to make these ideas sticky in your mind! Students often make
mastakes here!

79

Declaring our Array

Below, write down the code we would use to declare the primes array and fill it with the
data elements described above.

The type we declared is pronounced as

This means our array can hold only elements with type

We read primes[0] as

Length of an Array

Arrays all have a variable called length which we can refer to to get the length of the
array. What is the output of the line of code below?

System.out.println(primes.length) ;

Arrays are inflexible! We need to provide the exact number of elements of a certain
type that we want to be able to store.

Below is room for any further notes you have about arrays!

80

Some things to do with Array Objects!

Consider the below array definition in answering the below questions.

String[] buildings = new String[5];

buildings[0] =
buildings[1] =
buildings[2]
buildings [3]
buildings [4]

"Johnson Hall";
"Lakeside Dining";
"Riggs Hall";
"Waterbury Hall";
"Scales Hall";

1. Write down the Java type of buildings.

2. Write down a line of code that prints the first element in the buildings array.

3. Write down a line of code that prints the last element in the buildings array.

4. Write a while statement that loops through the array forwards, printing out each

element.

5. Write a while statement that loops through the array backwards, printing out each

element.

6. Write down some code that gets the first element from the buildings array, finds the
first word in that element, and prints it to the screen.

81

7. Do as you did in the previous instruction for the second and third items in the
buildings array.

8. Introduce a variable called shortBuildingNames and bind it to an array of Strings
of the same size as that of the buildings array.

9. Write down a loop that iterates over the buildings array, and for each indexed ele-
ment extracts the first word as you did above. Store that word in the shortBuildingNames
array at the same index as that of the buildings array.

10. Write down a loop that iterates over the buildings and shortBuildingNames par-
allel arrays and prints out the element from buildings followed by the element from
shortBuildingNames in parentheses.

Your output should look like the following;:

Johnson Hall (Johnson)
Lakeside Dining (Lakeside)
Riggs Hall (Riggs)
Waterbury Hall (Waterbury)
Scales Hall (Scales)

82

11 Module 11: The for Statement

The for statement is another iterative construct, often used in counter-control situations.
Note that the while statement is more general than for; all for loops can be written as
while loops.

Syntax

Remember that just like human (natural) languages, computer languages have syntax and
semantics.

for(initialization; test; change) {
sequence-of-statements

}

In the code below, identify the initialization, test, change statements.

for (int i = 0; i < primes.length; i = i + 1){
System.out.println(primes([i]);

3

What do you think the output from this code would be?

Semantics

Consider the following common pattern for defining while statements in counter-control
situations.

wnitialization

while (test) {
sequence-of-statements
change

}

Use the pattern to identify the initialization, test, change statements in the loop code
shown below.

int i = 0; initialization —
while (i < primes.length) {
System.out.println(primes([i]); test —
i=1+1;
} change —

83

Exercise: Mechanically Translate for — while

Until you're comfortable with the for statement on its own, you may want to translate
instances of it to the more familiar while statement. Practice using the loop below.

for (int radius 250; radius > 0; radius = radius - 10){
SCircle dot = new SCircle(radius);
painter.move();
painter.setColor (randomColor());
painter.paint(dot) ;

Exercise: Mechanically Translate while — for

For good practice, go back to Module 7: Arrays and translate the while loops that we
wrote to work with the parallel String arrays buildings and shortBuildingNames. Do
this on spare paper or on the back of the sheets in this module.

84

12 Module 12: ArrayList Objects

What is an ArrayList?

Write down some information about what an ArrayList is and when you would want to
use one.

Write down a few notes about the similarities and differences of working ArrayList objects
versus array objects.

Syntax for ArrayList Objects

On the next page, write down notes about ...

1. how you say the type ArrayList<Integer> out loud,
2. how to declare a new ArrayList object,
3. the methods associated with ArrayList objects.

There are blank pages so that you can structure your notes in a way that makes sense
to you and write down whatever pieces of information you may have difficulty recalling
readily later on.

85

86

87

88

Some Things to Do Featuring ArrayList Objects

1. Introduce a variable called names and bind it to an ArrayList of String objects
representing orange, red, cyan, yellow, and blue.

2. Using a while statement, display the color names in the list of names by indexing
through it.

3. Introduce an ArrayList of colors and bind it to an ArrayList containing Color
objects representing the colors from names.

4. Display the textual representation of the ArrayList of colors by indexing through
the list.

89

5. Print the ArrayList of colors just by using its name.

6. Display the list in reverse order.

7. Print name-color mappings by making use of the parallel ArrayLists.

90

We'll put the required infrastructure, an SPainter, and an SCircle in the program
so that we can use the functionality of NPW in the following problems.

8. Draw a row of colored dots according to an ArrayList of colors.

9. Draw a “plus” of colored dots, with 4 segments where each corresponds to a row of
dots.

10. Draw concentric circles, beginning at some radius, and cycling through the colors
repeatedly while reducing the radius by some amount until the radius is less than or
equal to zero.

91

92

13 Module 13: Modeling Objects with Classes

Object oriented programming is a style of programming which strives to represent “real
world” objects, their relations, and their manipulations, in a particularly natural manner.
Thus, oo-programming values naturalness of expression over efficiency of execution, purity
of linguistic expression, or any of a number of other considerations.

Classes and Instances

The basic unit of modeling in an object oriented language is the class of objects, from
which instances may be generated.

Some examples...

Class Name Instance
sl — a square of side 100

SSquare s2 — a square of side 200
Die dl — a standard die

! d2 — a twenty sided die
Card cl — ace of spades

c2 — 2 of clubs

SSquare s1 = new SSquare(100);
SSquare sl = new SSquare(200);

Die di
Die d2

new Die();
new Die(20);

Card cl = new Card("ace","spade");
Card c2 = new Card("2","club");

Make some notes about how these thing connect to each other!

93

How do you define a class?

To define a class you must define three things:

Example Class: Die

/*

* Model a die in terms of two properties:
* — order, the number of faces

* - top, the value of the top face

*/

package chance;
public class Die {
// THE INSTANCE VARIABLES (STATE)

private int order;
private int top;

// THE CONSTRUCTORS

public Die() {

order = 6;

top = (int) ((Math.random() * 6) + 1);
b

public Die(int nr0fSides) {

order = nr0fSides;
top = (int) ((Math.random() * nrOfSides) + 1);

94

// THE METHODS (BEHAVIOR)

public int top() {
return top;

3

public void roll() {
top = (int) ((Math.random() * order) + 1);
}

Roller, a class which uses our Die

/*
* Program to make use of the Die class.

*/
package chanceapps;
import chance.Die;

public class Roller {
public static void main(String[] args) {
// CREATE A STANDARD DIE AND ROLL IT 5 TIMES
createAndRollStandardDieFiveTimes () ;
}

private static void createAndRollStandardDieFiveTimes() {
System.out.println("Roll a standard die 5 times ...");
Die die = new Die();

die.roll(); System.out.print(die.top() + " ");
die.roll(); System.out.print(die.top() + " ");
die.roll(); System.out.print(die.top() + " ");
die.roll(); System.out.print(die.top() + " ");
die.roll(); System.out.print(die.top() + " ");

System.out.println();

95

Example Class: Card

S0 5T A el e a0 e A2 1e alie adle A0
v v aa % A eve | 8
v v

AEEA B A AU K I E A T R
TV Il iiv ey vty vilv vty vilv vl

A4 v A A v'v ve :V:
EA LALLM AL LA AL CA AL TA A ga‘a; LI T
P2 D7 Pl alie el te alle alts gl el

* IR TN X -x-':-x- ek
IR AR R I R AL A S X AR
2053 0700 6500 02 00 ¢ ZQ‘QZ ?o‘oi‘ WY

* RAIRAIRX 3¢
AR AT T AL

Desired Functionality:

compute a textual representation of a card that we can easily print

get the rank of a card
get the suit of a card
compute a short textual representation of a card

determine the color (red or black) of a card
. determine if a card is a royal

. determine the high card value of a card

. determine the “weight” of a card

. compare two cards for equality of rank

. compare two cards for equality of suit
. compare two cards to see if one is less in rank than the other

12. compare two cards to see if one is less in suit than the other

© 00N ® o

= =
— O

Make some notes about important observations we’re making about cards as we consider

how to model them.

96

Preliminary Card Class Development

We'll define our preliminary version of Card by doing the following. We’ll:

1.

Make some notes about our planning for and development of the preliminary Card class.
How are we doing it? What things are we thinking about, and what is our strategy? The
code is below, and you’ll likely wish to annotate it.

97

Preliminary Card Class

/* Class to model a playing card */

package car

ds;

public class Card {
// INSTANCE VARIABLES
private String rank;
private String suit;

// CONSTRUCTOR
public Card(String r, String s) {

rank = r;
suit = s;
}
// METHODS

public String toString() {

return "(" + rank + "," + suit + ")";

}

Preliminary Card Tester Program

/* Program to test the Card class */

package car

ds;

public class CardThing {

public stat
// CREA
Card c1
Card c2
Card c3

ic
TE

Card c4 =

Card cb5

// DISP
System.
System.
System.
System.
System.

}

LAY
out
out
out
out
out

void main(String[] args) {
A FEW CARDS

new Card("ace","spade");

new Card("2","club");

new Card("queen","heart");
new Card("10","diamond");
new Card("queen","diamond");

THE CARDS

.println(cl);
.println(c2);
.println(c3);
.println(c4);
.println(cb);

98

Notes on Classes and Class Development

Important: We develop classes a little bit at a time. We don’t just write one!

Note on Constructors: The main job of a constructor is to

Note on Referencers: A referencer is a program that references something. In object
oriented programming, we generally refer to methods that reference the

of a class as its referencers.

Be sure to take a significant amount of notes as we continue to develop the Card class. Be
thinking about what new things you’re learning, strategies for writing methods, etc. I’ll be
providing complete code, but you’ll want to take a bunch of notes.

99

100

14 Module 14: Algorithms

In computer science there are “classic” problems, most of which have several solutions
already worked out. Often students study the solutions to learn new techniques and new
ways of thinking and coding. We also learn how to assess the strengths and weaknesses of
an approach, as well as learn how to think about the costs — whether in terms of time or
hardware — of an approach.

In this module, we turn to thinking about some of the classic problems and their solutions.
The possible problems that we might study include:

e Sorting Problems: In these problems we have some kind of list structure and want
to put the elements in the list into a certain order. Often, we’ll have something like
an int[] and want to put the elements into increasing order, so that the smallest
element is first and the largest element is last. But, we could have a different kind of
list data type, or have elements of a different Java type, or have a different ordering
in mind. We also have options about whether to sort in place, which means sort in
the list structure that we already have, or create a new list structure and sort the
elements as we move them into the new list structure.

e Search Problems: In these problems we have some kind of sorted list structure and
want to know whether or not a given value is an element in the list structure.

There are many different algorithms that solve a sorting problem, such as Selection Sort,
Bubble Sort, Quick Sort, Merge Sort, etc. Similarly there are many different algorithms
that solve a search problem.

As we continue in this module, you will need to take notes independently. For each example
and topic, write down the goal — are we examining an algorithm to solve a sorting problem?
What do we hope to accomplish with the code that we write? — but also write down
something to help you remember the thought process that we trace as we write code to
solve the problem. You might write down something about the output, too, to complete
the examples and also help you remember why we wrote methods and other snippets of
code the way we did.

Notes

101

102

Lab Assignments

15 Lab 1: Hello World! Hello You!

William James on WISDOM

The art of being wise is the art of knowing what to overlook.

Overview

In this lab you will establish and run two very simple programs. The first is loosely referred to as the “hello world”
program. This opener is purely text-based. The second is a variant of the first which features a widget — a compu-
tational component with a graphical representation.

Why do it?
As you work through this lab you will:

1. Get acquainted with IntelliJ, the standard computer programming environment for this particular course.
2. Establish and run simple Java programs in IntelliJ.
3. Hone your skills with respect to methodically executing sequences of tasks.

Task 0: Get set up on the CS department machines

1. Log on to a sanctioned machine. Use your Laker ID for your username and the password provided in class.
2. Change your password ...

(a) Open a terminal by right clicking on the desktop and picking Open Terminal.
(b) Type yppasswd at the prompt.

(c¢) Enter your old password when asked for it. It will not be visible as you type.
(d) Enter your new password when asked for it. It will not be visible as you type.

3. Once you've returned to the prompt you may close the terminal.

Task 1: Prepare to do some Java programming in IntelliJ

1. Get into IntelliJ ...

(a) Search for IntelliJ on your machine, unless you can spot it just lying around somewhere.
(b) Launch it!

103

2. Establish a new project ...

(a) When the Welcome to Intelli] IDEA window appears, choose Create New Project.
(b) On the New Project form that appears on the screen ...
i. Be sure that Java is selected on the left side of the screen and click Next.
ii. Choose not to use a template for our project and click Next again.
iii. Type CS1 into the Project Name field.
iv. Click Finish.

Task 2: Establish and run the traditional starter program

1. Create a package ...

(a) On the left side of the screen, click the arrow next to CS1 to expand it.
(b) Right click on the src folder and create a new Package. A package is a way to keep parts of your Java
program organized.
(¢) In the window that appears, call your package greetings and click OK.
2. Create a source program ...
(a) Expand the the src folder if necessary.
(b) Right click on the greetings package and create a new Java Class.
(¢) On the New Java Class form that appears ...
i. Type HelloWorld into the Name field.
ii. Select Class if it isn’t already.

iii. Press the(Enter)key on the keyboard.
(d) Modify the source program template so that it matches the following:

1 /%

2 % Traditional starter program.

3 */

4

5 package greetings;

6

7 public class HelloWorld {

8

9 public static void main(Stringl[] args) {
10 System.out.println("Hello world!");
11 }
12
13 %

3. Run the program ...

(a) Select Run ‘HelloWorld.main()’ from the menu that appears when you right click somewhere in the
area that is displaying the source code.
(b) Observe that Hello World! appears among the information the Output window.

104

Task 3: Establish and run the nontraditional variant of the starter program

1. Create a source program ...
(a) Right click on the greetings package and create a new Java Class.
(b) On the New Java Class form that appears ...
i. Type HelloYou into the Name field.
ii. Select Class if it isn’t already.

iii. Press the(Enter)key on the keyboard.
(¢) Modify the source program template so that it matches the following:

1 /%

2 * Variant of the traditional starter program that features a widget.
3 =/

4

5 package greetings;

6

7 import javax.swing.JOptionPane;

8

9 public class HelloYou {
10
11 public static void main(String[] args) {
12 String name = JOptionPane.showInputDialog(null, "Who are you?");
13 System.out.println("Hello, " + name + "!");
14 b
15
16}

2. Run the program ...

(a) Select Run ‘HelloYou.main()’ from the menu that appears when you right click somewhere in the area
that is displaying the source code.

(b) Enter your name into the Input dialog box that appears.

(c) Observe that the appropriate text appears among the information the Output window.

Task 4: Reflection

Think for a little while about this lab and your engagement with it. What did you learn that is conceptually signifi-
cant? What did you learn that is technologically useful? What is your most salient thought about the lab and your
engagement with it?

105

106

16 Lab 2: Hello Painter! Hello Composer!

Carl Jung on THE CREATIVE MIND

The creation of something new is not accomplished by the intellect but by the play instinct acting from inner necessity.
The creative mind plays with the objects it loves.

Something to think about

Learning can be viewed as a two stage process in which you (1) gain some experience, and (2) endeavor to make
sense of the experience. As you engage in this lab, which affords you an opportunity to get acquainted with the Non-
representational Painting World and the Modular Melody World, please do your best to appreciate this perspective
on learning.

Overview

One premise of this course is that it tends to be more fun to take, and more fun to teach, if some interesting compu-
tational objects, housed in computational learning environments, are incorporated into the course. With this premise
in mind, a graphical microworld and a musical microworld are introduced in this lab.

The Nonrepresentational Painting World (NPW) contains functionality for creating and manipulating a variety of
shapes. It also contains functionality for creating painters that can render (draw/paint) the shapes on a virtual
canvas. In this lab you are asked to create two images in the context of the NPW.

The Modular Melody World (MMW) affords access to simple note objects, and to composer objects that make use of
a dedicated note object to assist you in laying down coherent sequences of musical notes. The note objects, whether
stand alone or composer controlled, can be rendered sonically, visually, or chromesthetically. In this lab you will be
asked to create a melodic fragment with a stand alone note object, to establish a listening program that will enable
you to get acquainted with the most basic modular melodic sequences of MMW, and to create a melodic sequence
by enlisting the aid of a composer object.

Note: This lab is sure to run a bit long! It is not expected that you will finish it during the lab hour.
Please finish this on your own prior to your next week’s lab hour. You might think of the task of
completing this lab on your own as a preliminary programming assignment, since the programming
assignments are activities that you are expected to do on your own.

107

Why do it?

As you work through this lab you will:

- W=

ot

Install some . jar files in your CS1 project library, files that contain programs that you will run.

Create and use computational objects in Java.

Engage in some creative computational activities.

Learn how to write a program by starting with an existing program that does something similar to what you
want your new program to do.

Gain familiarity with the Nonrepresentational Painting World.

Gain familiarity with the Modular Melody World.

Task 1: Install the software that implements the computational microworlds (NPW
and MMW) in the library of your CS1 project

1.

Get a browser going.

2. Find your way to the following page:

https://www.cs.oswego.edu/~ewilcox/cslsoftware.html
Download three files. These files contain software that you will use to create images and melodic sequences.

(a) Download the simple painter code (the SimplePainter.jar file) from the Java Microworld APIs area of
the page. Important: Please perform the download in the following way:
i. Right click on the link.
ii. Select the Save Link As ... option.
iii. Save the file to your home directory, or to a special directory that you create for the purpose of storing
these three files.

(b) Download the simple composer code (the SimpleComposer. jar file) from the Java Microworld APIs area
of the page. Important: Please perform the download in the manner prescribed for the simple painter
file.

(¢) Download JFugue (the jfugue-4.0.3-with-musicxml. jar file) from the Java Microworld APIs area of
the page. Important: Please make use of the same downloading procedure.

4. Add the files to the External Libraries folder of the CS1 project:

(a) Return to Intelli].

(b) Select, if necessary, the CS1 project.

(¢) From the File menu choose Project Structure...

(d) On the left side of the window which appears, choose Modules.

(e) Click the Dependencies tab.

(f) At the bottom of the window, near the center, click the + button. Select the JARs or directories...

option. With the assistance of the widget that appears, find your way to the SimplePainter. jar file that

you recently downloaded, and then get it.

(g) At the bottom of the window, near the center, click the + button. Select the JARs or directories...
option. With the assistance of the widget that appears, find your way to the SimpleComposer. jar file
that you recently downloaded, and then get it.

(h) At the bottom of the window, near the center, click the + button. Select the JARs or directories... op-

[o PN

tion. With the assistance of the widget that appears, find your way to the jfugue-4.0.3-with-musicxml. jar

file that you recently downloaded, and then get it.
(i) Click OK in the Project Structure window.
(j) If you haven’t yet done so, look to see if the External Libraries folder contains the three files.

108

Task 2: Write and run a program to generate an image consisting of a blue dot

eve Blue Dot

1. Create a package ...

(a) On the left side of the screen, click the arrow next to CS1 to expand it.
(b) Right click on the src folder and create a new Package.
(c¢) In the window that appears, call your package npw and click OK.

2. Create a source program ...

(a) Right click on the npw package and create a new Java Class.
(b) On the New Java Class form that appears ...

i. Type BlueDot into the Name field.

ii. Select Class if it isn’t already.

iii. Press the(Enter)key on the keyboard.
(¢) Modify the source program template so that it matches the following:

BlueDot Program

1 /%

2 * Program to paint a blue dot in the context of the Nonrepresentational
3 * Painting World, NPW.

4 x/

5

6 package npw;

7

8 import java.awt.Color;

9 import javax.swing.SwingUtilities;

10 import painter.SPainter;

11 import shapes.SCircle;

12

13 public class BlueDot {

14

15 // THE SOLUTION TO THE BLUE DOT PROBLEM
16

109

17 private void paintThelImage () {

18 SPainter klee = new SPainter ("Blue Dot" ,600,600);
19 SCircle dot = new SCircle (200);

20 klee.setColor (Color.BLUE);

21 klee.paint (dot);

22 }

23

24 // REQUIRED INFRASTRUCTURE

25

26 public BlueDot () {

27 paintThelImage () ;

28 }

29

30 public static void main(Stringl[] args) {
31 SwingUtilities.invokeLater (new Runnable() {
32 public void run() {

33 new BlueDot ();

34 }

35 IO

36 }

37

38 }

3. Run the program ...

(a) Select Run ‘BlueDot.main()’ from the menu that appears when you right click somewhere in the area
that is displaying the source code.

(b) Observe the output, the blue dot in the window that appears.

(¢) Close the window containing the blue dot.

Task 3: Write and run a program to generate the first several notes of a well-known
melody using a lone note

1. Create a package...

(a) Right click on the src folder and create a new Package.

(b) In the window that appears, call your package mmw and click OK.
2. Create a source program...

(a) Right click on the mmw package and create a new Java Class.
(b) On the New Java Class form that appears ...

i. Type Dorothy into the Name field.

ii. Select Class if it isn’t already.

iii. Press the(Enter)key on the keyboard.
(¢) Modify the source program template so that it matches the following:

110

Dorothy Program

1 /%

2 * Name that tune!

3 */

4

5 package mmw;

6

7 import note.SNote;

8

9 public class Dorothy {

10

11 public static void main(Stringl[] args) {
12 SNote note = new SNote();

13 note.text ();

14 note.x2(); note.play();

15 note.rp(7); note.play();

16 note.s2(); note.lp(); note.play();
17 note.1lp(2); note.s2(); note.play();
18 note.rp(); note.play();

19 note.x2(); note.rp(); note.play();
20 note.rp(); note.play();

21 System.out.println();

22 }

23

24 %

3. Run the program ...

(a) Select Run ‘Dorothy.main()’ from the menu that appears when you right click somewhere in the area
that is displaying the source code.

(b) Observe the output, the textual representation of the notes, at least. If you can do so, give a listen. Can
you name that tune?

Task 4: Write and run a program to listen to the Basic modular melodic sequences

Eight of the modular melodic sequences inherently available in the MMW are classified as Basic sequences. This
task invites you to write a program that will allow you to listen to the sequences, provided you have a way to hear
the machine’s sonic output.

1. Create a source program...
(a) Right click on the mmw package and create a new Java Class.
(b) On the New Java Class form that appears ...
i. Type BasicsListener into the Name field.
ii. Select Class if it isn’t already.

iii. Press the(Enter)key on the keyboard.
(c) Modify the source program template so that it matches the following:

111

BasicsListener Program

1 /%

2 * Program to check out (view and possibly listen to) the eight melodic
3 * sequences classified as "Basic" sequences in the Modular Melody World
4 */

5

6 package mmw;

7

8 1import composer.SComposer;

9

10 public class BasicsListener {

11

12 public static void main(String[] args) {

13 SComposer ¢ = new SComposer ();

14 c.text ();

15 System.out.println("c.mmsl ..."); c.mmsl(); space(c);
16 System.out.println("c.mms2 ..."); c.mms2(); space(c);
17 System.out.println("c.mms3 ..."); c.mms3(); space(c);
18 System.out.println("c.mms4 ..."); c.mms4(); space(c);
19 System.out.println("c.mms5 ..."); c.mms5(); space(c);
20 System.out.println("c.mms6 ..."); c.mms6(); space(c);
21 System.out.println("c.mms7 ..."); c.mms7(); space(c);
22 System.out.println("c.mms8 ..."); c.mms8(); space(c);
23 c.untext ();

24 }

25

26 private static void space(SComposer c) {

27 c.untext(); c.rest(2); c.text();

28 }

29

30 ¥

2. Run the program. If you can hear the sound generated by the machine you are working on, good! If not,
perhaps you can imagine it from the textual output provided.

(a) Select Run ‘BasicsListener.main()’ from the menu that appears when you right click somewhere in
the area that is displaying the source code.
(b) Observe the output, the textual representation of the notes, for sure. The sounds, if possible.

Task 5: Develop a program to generate a simple melodic sequence from modular
melodic sequences using a simple composer

1. Create a source program...
(a) Right click on the mmw package and create a new Java Class.
(b) On the New Java Class form that appears ...
i. Type Melody into the Name field.
ii. Select Class if it isn’t already.

iii. Press the(Enter)key on the keyboard.
(c) Modify the source program template so that it matches the following:

112

Melody Program

1 /%

2 * A sequence of simple modular melodic sequences.
3 */

4

5 package mmw;

6

7 import composer.SComposer;

8

9 public class Melody {

10

11 public static void main(Stringl[] args) {
12 SComposer ¢ = new SComposer ();
13 c.text ();

14 c.mmsb5 () ;

15 c.rp); c.mms50); c.1pQO);

16 c.1lp); c.mms50); c.rp();

17 c.mms5 () ;

18 c.untext ();

19 }

20

21 %

2. Run the program. If you can’t hear the sound on the system you are working on, no worries. The text command
causes the notes to be rendered textually, so you should be able to determine whether or not your program is
working correctly.

(a) Select Run ‘Molody.main()’ from the menu that appears when you right click somewhere in the area
that is displaying the source code.
(b) Observe the output, the textual representation of the notes, for sure. The sounds, if possible.

3. Add a bit to the program. Do this by means of a copy-paste-edit operation.
(a) Copy the following four lines of the program:

c.mms5();
c.rp(; c.mms50; c.1p();
c.1pO; c.mms5Q0); c.rpQ);
c.mms5() ;

(b) Paste them, right after the four lines that you copied, just before the c¢.untext () command that consti-
tutes the last statement of the main method. You will then have two adjacent occurrences of the same
sequence of four statements.

(¢) Edit the second of the two identical sequences of four statements so that it looks like this:

.mms7();
.rp(); c.mms8(); c.1pO);
1pO; comms7(); c.rpQ);
c.mms8() ;

O 0 0

4. Run the program once again, and observe the longer sequence of notes.

113

Task 6: Write and run a program to generate the Target logo in the NPW

Please note that the diameter of the large red defining circle is three times that of the small red
defining circle, and that the diameter of the white defining circle is twice that of the small red
defining circle.

1. Create a source program from the extant BlueDot program, but then change it to paint the Target logo ...

(a) Right click on the npw package and create a new Java Class.
(b) On the New Java Class form that appears ...
i. Type Target into the Name field.
ii. Select Class if it isn’t already.
iti. Press the(Enter)key on the keyboard.

(c) Using the BlueDot program as a model, and using the specifications of NPW functionality as reference
material (see Appendix 1), write a program to paint the Target logo. In doing so, please proceed in the
following manner:

i. Replace all of the text in the Target buffer with all of the text in the BlueDot buffer. (Copy and
paste is your friend!)

ii. Edit the comment at the head of the file to reflect the fact that you will be painting the Target logo
rather than a blue dot.

iii. Replace all occurrences of BlueDot with Target. (There are three such occurrences.) Also, replace
the title of the painter’s canvas appropriately.

iv. Change the method that actually does the painting (the paintTheImage method) so that it paints the
Target logo rather than the blue dot. Note that you may use more than one SCircle object.

2. Run the program. If it does not work, fix it, and repeat this item.

Task 7: Reflection

1. How might you paint the Target logo with just two SCircle objects? How would your current paintTheImage
method change?

114

2. How might you paint the Target logo with just one SCircle object? What changes would you need to make
to the order of the lines of code in order to complete the task with this constraint?

3. Think for a little while about this lab and your engagement with it. What did you learn that is conceptually
significant? What did you learn that is technologically useful? What is your most salient thought about the
lab and your engagement with it?

115

116

17 Lab 3: Establishing a CS1 Work Site

Samuel Johnson on THE ACTIVE MIND

When the eye or the imagination is struck with any uncommon work, the next transition of an active mind is to the
means by which it was performed.

Overview

This lab is designed to help you to commence the activity of building a Web site dedicated to presenting your work in
this course. In operational terms, this lab engages you in processes of creating directories, downloading files, creating
files, distributing files to appropriate directories, and repeatedly editing/viewing files in a browser.

Please bear in mind that the idea is merely for you to strive to complete the tasks specified in this lab
during the lab period. It is not expected that you will complete all of them during the allocated time.
Please complete those that you do not manage to finish during the lab time within the following week.

Why do it?

To engage in computer programming effectively, it is essential to (1) have a sense of the environment in which you
are operating, and (2) have at least a modest command of a selection of tools which are used to operate within, and
occasionally tailor, that environment. As you work through this lab you will develop a sense for the environment,
and a bit of knowledge pertaining to the operating system, a texted editor, and a Web browser.

You will also commence to build a Web site by:

1. Creating a directory structure for your work site.
2. Downloading files to particular locations within your newly created directory structure.
3. Engaging in a constructionist process of:
(a) Editing .html files and a .css file using the Emacs text editor.
(b) Viewing .html files in a browser.
(c) Saving .java files as .html files to particular locations within your Web site work area.
(d) Creating and saving image files to particular locations within your Web site work area.
(e) Creating and saving Standard IO demo files to particular locations within your Web site work area.

Required directory structure

Please do your best to make the following image sticky in your mind. The image suggests the directory structure
that you should use to house files associated with this course.

117

HOME

\ 4

CS1Files public_html IdeaProjects

Y
data midi CS1WorkSite

| cstcss | | indexhim

\

[HeIIoWorId.java.htmI] BlueDot.java.html Dorothy.java.html
HelloYou java.html | BlueDot.png DorothyDemo.html |
HelloWorldDemo.html] Target.java.html Melody.java.htmi
HelloYouDemo.html] Target.png MelodyDemo.html]
‘[PumpltUp.java.html] SomePrimitives.java.html]

PumpltUp.png SomePrimitivesDemo.htmI]

Terminal Mini Manual

In this lab you will make considerable use of the Terminal window. The text gives instructions that includes the
commands you need. As you come across commands with which you are unfamiliar, write them down in this space,
and on the next page, along with a short description of what the command does and an example of how to use the
command. In this way, you are making a “mini manual” for using the Terminal window.

118

119

Task 1: Get ready to do some work

Log on to a sanctioned machine.

Open a Terminal window.

Open the Emacs text editor. If faced with more than one, be sure to choose the GUI version.
Open Intellid.

Open a Web browser, like Firefox or Chrome.

CU W=

Task 2: Add some folders to your directory structure

As you work through this task, it will benefit you to be mindful of the relationship between the commands that your
are issuing and the directory structure depicted.

1. In the Terminal window, make sure that you are in your home directory by issuing two operating system
commands, and observing the operating system response.
(a) Issue the “go home” version of the change directory command by typing cd followed by the(Enter)key.
(b) Issue the print working directory command by typing pwd followed by the(Enter)key.

2. Create a folder for your Web work. This folder must have a particular name in order for the CS servers to,
eventually, allow you to make your work available for all to see on the Web.

(a) Issue the make directory command to create the public_html folder within your home directory by
mindfully thinking underscore (rather than dash) and typing: mkdir public_html (followed by the(Enter)

key)
(b) Issue the list files command by typing 1s (that is “elle” “esss”) followed by the(Enter)key. Observe that
your folder was created!

3. Change directories so that you are working within your public_html directory.

(a) Type: cd public_html (followed by the(Enter)key)
b) Just to be sure that you are where you want to be, issue the command to print your working directory,
g

pwd, and observe.
4. Create a folder within your public_html directory for your course work site. Be careful to name it as specified.
(a) Issue the make directory command by typing: mkdir CS1WorkSite

b) Issue the list files command by typing ls (that is “elle” “esss”) followed by the(Enter)key. Observe that
g
your folder was created!
5. Create a folder within your home directory for the storage of miscellaneous course related files. Be careful to
name it as specified.
(a) Issue the “go home” version of the change directory command by typing cd followed by the(Enter)key.
(b) Just to be sure that you are where you want to be, issue the command to print your working directory,
pwd, and observe.
(c) Issue the make directory command to create the folder by typing: mkdir CSiFiles

(d) Issue the list files command by typing 1s (that is “elle” “esss”) followed by the(Enter)key. Observe that
your folder was created!

6. Change directories so that you are working within your CS1Files directory.

(a) Type: cd CS1Files
(b) Just to be sure that you are where you want to be, issue the command to print your working directory,
pwd, and observe.

7. Create a folder called data within your CS1Files directory. Check to see that you were successful.
8. Create a folder called midi within your CS1Files directory. Check to see that you were successful.

120

Task 3: Download two files that will serve as the basis of your Web work

1. Get into the browser and find your way to the CS1 software webpage at:
https://www.cs.oswego.edu/~ewilcox/cslsoftware.html

2. From within the CS1 WorkSite Materials area, download the style file for your Web work to the CS1WorkSite
directory by carefully proceeding in the following manner:
(a) Important: Please perform the download in the following way:
i. Right click on the CS1.css link.
ii. Select the Save Link As ... option.
iii. Save the file to your CS1WorkSite directory.
(b) Check, in the Terminal window, to be sure that you were successful by listing the files in the CS1WorkSite
directory and observing.

3. From within the CS1 WorkSite Materials area, download the main content file for your Web work to the
CS1WorkSite directory by carefully proceeding in the following manner:
(a) Important: Please perform the download in the following way:
i. Right click on the index.html link.
ii. Select the Save Link As ... option.
iii. Save the file to your CS1WorkSite directory.

(b) Check, in the Terminal window, to be sure that you were successful by listing the files in the CS1WorkSite
directory and observing.

Task 4: Load the index.html file of the CS1WorkSite directory into your Web browser

The index.html file of the CS1WorkSite directory will serve as the main page for your work site. To view it, do one
of the following two things:

e Find the index.html file icon in your CSiWorkSite directory by looking through your file icons, and then
double click on the icon.

e Enter the local address of the index.html file of your CS1WorkSite directory into the browser. (Something
like: file:///home/HOME/public_html/CS1WorkSite/index.html should do.)

Task 5: Edit the content file, index.html of the CSiWorkSite directory, so that your
name replaces the backwards “noname” token

1. Activate the Emacs text editor to perform this task.
2. Within the text editor, load the index.html file of the CS1WorkSite directory. There are various ways to
do this. My favorite is to use my hands and type(CONTROL-x)then(CONTROL-f]and then interact in the

minibuffer.

3. Change the text, replacing “Emanon” with your name.
Save the file.
5. Reload the file in the browser and take a look.

e

121

Task 6: Edit the style file by changing the background color of the site

CU LN

Load the CS1.css file into Emacs.

Change the background color value in the CS1.css file.

Save the file.

Reload the index.html file of the CS1WorkSite directory into the browser, and observe.

If you are not pleased with the new background color that you have chosen, change it again.

Task 7: Change the style of your site in two other respects

1.
. Reload the index.html file of the CS1WorkSite directory into the browser, and observe.

Edit the style file by changing the color used for main headers, level H1 and H2, to some color other than blue.

Edit the style file by changing the color used for links (hyperlinks) to the same color that you chose to use
for your main headers.

Reload the index.html file of the CS1WorkSite directory into the browser, and observe.
If you don’t like the color you chose for these entities, choose again!

Task 8: Make a couple of simple observations

1.

2.

Observe (do some clicking) that the links in the “Lab 1 block” of links and in the “Lab 2 block” of links and
in the “Assignment 1 block” of links do not work.
Observe that the links to the various external sites do work.

Task 9: Operationalize your work site links for the Lab 1 source files

1.

FYT, this task involves saving the source files from Lab 1 that reside in the IntelliJ greetings package of your
CS1 project to the greetings directory of your CS1WorkSite directory. IntelliJ will do some of the work for us
— remember that we haven’t created the greetings directory (though we could have!). As you work through
this, it is important that you get the names and places correct!

From within IntelliJ, activate your HelloWorld. java program.

Ensure you are using the “Light” theme in IntelliJ. If you are not, click File then Settings, and change the
Theme option in the Appearance panel, under Appearance & Behavior.

Select Export to HTML... from the IntelliJ File menu, and then interact with the dialog box that pops
up to save HelloWorld.java to your CSiWorkSite directory. Be sure to option to Show line numbers is
selected. IntelliJ will create a file, called HelloWorld. java.html, inside the appropriate package directory
(CSiWorkSite/greetings, in this case). Check that the Output directory is your CS1WorkSite directory,
not your CS1 project. This ensures that IntelliJ makes the package directory for you, if needed, and places the
new html file in the package directory for your website.

From within IntelliJ, activate your HelloYou. java program.

Select Export to HTML... from the IntelliJ File menu, and then interact with the dialog box that pops up
to save HelloYou. java as HelloYou.html to your CSiWorkSite directory. IntelliJ will create a file, called
HelloWorld. java.html, inside the CS1WorkSite/greetings directory.

Back in your terminal, visit your CS1WorkSite folder and issue the list files command by typing 1s (that is
“elle” “esss”) followed by the(Enter)key. Observe that the greetings folder has been created! Navigate inside
it to see that two files are there.

122

8. Reload the web page and check to make sure that both of the links do, indeed, work.

Task 10: Operationalize your work site links for the Lab 2 source files

1. FYI, this task involves saving the source files from Lab 2 that reside in the IntelliJ npw and mmw packages of your
CS1 project to the npw and mmw directories that are embedded within your CS1WorkSite directory. Remember
that IntelliJ will do some of the work for us regarding the creation of, and placement of files in, the npw and
mmw directories. It is important that you get the names and places correct! Check that the Output directory
is your CS1WorkSite directory — not the package directories.

2. By analogy with work that you did in the previous task, perform the following save operaton as you did
previously for the following files:

e BlueDot. java

e Dorothy. java

e BasicsListener. java
e Melody. java

e Target. java

3. Reload the web page and check to make sure that all of the links do, indeed, work.

Task 11: Operationalize your work site links for the Lab 2 image files

1. Save the picture of the blue dot as an image file.

(a) Expand IntelliJ so that you can work with it again.

(b) Run the blue dot painting program.
(c) Make a screen shot of just the window containing the image of the blue dot (the painter’s canvas) by doing
the following:

i.
ii.
ii.
iv.
V.
vi.

Run the Screenshot program, perhaps by way of the Applications icon.

In the window that appears, select the Grab the current window option.

Set the delay to something like 5 seconds.

Click to take the screen shot.

Within a couple of seconds click on the window of interest.

After the snapshot has been taken, appropriately interact with the system so that the resulting image
file (of type .png) is saved as BlueDot.png into the npw directory that is embedded within your
CS1iWorkSite directory (The other option of the dialog box is useful for navigating to the desired
directory.)

2. Check to see that you were successful.

3. Save the picture of the target as an image file. Specifically, save the picture as Target.png within the npw
directory that is embedded within your CS1WorkSite directory. Work by analogy with what you were asked to
do for the blue dot.

4. Check to see that you were successful.

Task 12: Operationalize your work site links for the Lab 1 standard demo files

1. Focus on getting a demo page up for the “hello world” program. To do this:

(a) Find your way the CS1 software page at:
https://www.cs.oswego.edu/~ewilcox/cslsoftware.html

123

Simply left click on CS1StandardDemoTemplate.html link from within the CS1 WorkSite Materials area.
Find a way to view the page source. (In the Firefox browser, for example, you might go to the menu bar,
open the Tools menu, select the Web Developer option, and select Page Source option from within it.)
Select the text on the page (all of it), and copy it. You will paste it somewhere else soon enough.

Find your way to the Emacs editor. Create a new file called HelloWorldDemo.html within the greetings
folder of your CS1WorkSite directory. I like to do this sort of thing with my hands, typing(CONTROL-x
then(CONTROL-f)and then interacting with the minibuffer.

Paste the text that you previously copied into the empty buffer.

Change the two place holder items, the question mark and the pound sign, appropriately. The former
with HelloWorld. java and the latter with code copied from the standard output stream in IntelliJ after
you run the HelloWorld. java program.

Save the file.

Reload the index.html file from your CSiWorkSite directory and see if the link to this demo is working
properly. If not, carry on trying to get it to work properly!

2. Working by analogy with what you just did for the “hello world” program, establish a demo page called
HelloYouDemo.html within the greetings folder of your CS1WorkSite directory for the “hello you” program.

Another approach would be to right click on the CS1StandardDemoTemplate.html link from within the CS1 WorkSite
Materials area of the software webpage and save this file to your CS1WorkSite directory. Then when you wish to make
a demo file for a program that produces text-based output, make a copy of the demo template to the appropriate
package directory with your CS1WorkSite directory and rename the copy to be the name of the program. You can
then open up the file using Emacs, edit the two placeholder items, copy and paste your output into the appropriate
place, and save the file.

Task 13: Operationalize your work site links for the Lab 2 standard demo files

1. Focus on getting a demo page up for the Dorothy program. To do this:

(a)

Find your way the CS1 sotware page at:

https://www.cs.oswego.edu/~ewilcox/cslsoftware.html

Simply left click on CS1StandardDemoTemplate.html link from within the CSI WorkSite Materials area.
Find a way to view the page source.

Select the text on the page (all of it), and copy it. You will paste it somewhere else soon enough.

Find your way to the Emacs editor. Create a new file called DorothyDemo.html within the mmw folder
of your CS1WorkSite directory. I like to do this sort of thing with my hands, typing(CONTROL-x)then
(CONTROL-f)and then interacting with the minibuffer.

Paste the text that you previously copied into the empty buffer.

Change the two place holder items, the question mark and the pound sign, appropriately. The former
with Dorothy . java and the latter with code copied from the standard output stream in IntelliJ after you
run the Dorothy. java program.

Save the file.

Reload index.html file of your CSiWorkSite directory and see that the link to this demo is working
properly. If not, carry on trying to get it to work properly!

2. Working by analogy with what you just did for the Dorothy program, establish a demo page within the mmw
folder of your CS1WorkSite directory called BasicsListenerDemo.html for the BasicsListener program.

3. Again working by analogy with what you just did for the Dorothy program, establish within the mmw folder of
your CS1WorkSite directory a demo page called MelodyDemo.html for the Melody program.

124

Task 14: Incorporate Programming Assignment 1 artifacts into your site

Please incorporate all of the relevant Programming Assignment 1 artifacts into your site. (This task will be a good
test of what you should have learned in the previous parts of this lab!) You will need to incorporate source programs,
images (which are demos for graphics producing programs), and Standard IO demos into your site as you work
through this task, all things that you were taught to do thus far in this lab.

Task 15: Securing your work

In this task, you will adjust the permissions of your website and home folder in order to keep them safe and secure
during the semester. You must complete this task in order for Lab 3 to be considered complete by your lab instructor.

1. Test that your website is visible by visiting: http://cs.oswego.edu/~USERNAME/CS1WorkSite in a web
browser, replacing “USERNAME” with your username.

2. Follow the steps below to allow only your instructors to visit your website for the time being (after the semester
you can open it up to everyone!).

(a) Find your way the course page at:
https://cs.oswego.edu/~ewilcox/212£2025

(b) From within the Web Site Resources area, download the htaccess.txt file and save it to your CS1WorkSite
directory.

(¢) Open a terminal and navigate to your CS1WorkSite directory.

(d) Run the command: mv htaccess.txt .htaccess
This will rename the .htaccess file, which enforces some authentication on the directory.

(e) Now visit your website in the browser as you did a minute ago. You should now be faced with a login
window! Your username and password won’t work, but don’t worry, ours will!

(f) You can continue to see your website locally by just opening the index.html file in Firefox. Test this to
make sure it still works and that you can see your page.

3. Restrict access to your important files. For any folder or file in your directory that you would like to keep
others out of, we will change the permissions. We’ll do it on your IdeaProjects folder, but you should work
by analogy for any other folder you want to keep prying eyes away from.

(a) Open a terminal and get to your home directory.
(b) Type: chmod 700 IdeaProjects

Task 16: Reflection

Think for a little while about this lab and your engagement with it. What did you learn that is conceptually signifi-
cant? What did you learn that is technologically useful? What is your most salient thought about the lab and your
engagement with it?

125

126

18 Lab 4: Expressions and Shapes World Problem Solving

E. W. Dijkstra on ABSTRACTION

Being abstract is something profoundly different from being vague. The purpose of abstraction is not to be vague,
but to create a new semantic level in which one can be absolutely precise.

Overview

For this lab you will be asked to write two programs, each a little bit at a time. The first program involves arithmetic
expressions. The second program involves shapes from the NPW. You will also be asked to post these programs, as
well as output generated by these programs, to your work site.

Blue Diamond

The blue diamond depicted here was the inspiration for the ShapesThing program that is featured in the second
half of this lab. Keeping it in mind may make that part of the lab a bit more meaningful to you. Moreover, the
loose geometric connotations that it conjures in the mind should prime you to better think thoughts with respect to
elements of the ExpressionsThing program that is featured in the first part of the lab.

eoce Blue Diamond

127

Why do it?

As you work through this lab you will:

1.
. Perform computations involving fully parenthesized arithmetic expressions.

Introduce variables and bind them to values.

Create shapes from the NPW, both directly with constructors and indirectly via inscribing/circumscribing
functionality.

Perform computations involving shapes in the NPW.

Some things you will need to know ...

For this lab you need to know three specific things: (1) what it means for an expression to be fully parenthesized, (2)
how to play a game called Crypto, and (3) a couple of specific concepts pertaining to shapes and the corresponding
bits of shape generating functionality found in the NPW.

1.

A fully parenthesized expression is an expression for which there is exactly one set of parentheses corre-
sponding to each operator. For example: (6 + 3),((9 -4) * 3),5,and (((3 +3) +3) +3)
are all fully parenthesized arithmetic expressions. These are not: ((56 + 5)), (3 * 3 * 3), and (111).
The Crypto Problem is just this: Given N source numbers and one goal number, all integers within a
prescribed range, construct a fully parenthesized arithmetic expression that evaluates to the goal number which
uses all of the source numbers and zero or more occurrences of each of the four basic arithmetic operators. For
example: Make 5 (the goal) from 8 4 5 2 (the sources). Here is one possible solution: (5 + (8 = (4 * 2
))).

The inscribing circle of a given square is the circle that intersects the square at the midpoint of each side
of the square. The inscribing square of a given circle is the square that intersects the circle at each of its
four corners. The circumscribing circle of a given square is the circle that intersects the square at each of
its four corners. The circumscribing square of a given circle is the square that intersects the circle at the
midpoint of each of its four sides. You may find it helpful to look over the specifications for the simple shapes
functionality of the NPW (see Appendix 1) that pertain to these definitions.

Task 1: Get ready to do some work

1.
2.
3.

Log on to a sanctioned machine.
Open IntelliJ.
Open the CS1 project, if need be.

Task 2: Start creating an ExpressionsThing program

1.

Create a package...

(a) Right click on the src folder and create a new Package.
(b) In the window that appears, call your package expressions and click OK.

2. Create a source program...

(a) Right click on the expressions package and create a new Java Class.
(b) On the New Java Class form that appears ...

128

3.

i. Type ExpressionsThing into the Name field.
ii. Select Class if it isn’t already.

iii. Press the(Enter)key on the keyboard.

Write a multiline comment at the start of the file containing something reasonable; something to suggest the
fact that this program affords opportunities to explore the construction of arithmetic expressions in the context
of some very simple problem solving.

Task 3: Three related expressions

1.

2.

4.

Create an empty main method. Look to previous lab source files for what the main method declaration should
look like.

To the main method, add the following code which features three expressions “intended” to compute the
perimeter of a circle of radius 5 (using 3.14 as an approximation to PI).

double one = 3.14 * 5 + 5;

System.out.println("one = " + one);
double two = 3.14 * (5 + 5);
System.out.println("two = " + two);

double three = (3.14 * (5 + 5));
System.out.println("three = " + three);

Run your program. Which expression is incorrect, in that it doesn’t produce the expected result? (Write it
down.)

Which expression is fully parenthesized? (Write it down)

Task 4: Translating fully parenthesized arithmetic expressions from English

1.

10.
11.

FYI, items in this task will ask you to add pairs of statements to the ExpressionsThing program. The first
statement of each pair is supposed to introduce a variable and bind it to a value expressed as a straightforward
translation of an English phrase representing a numeric computation. The second statement of the pair is
merely supposed to display the value of the expression, reasonably labelled.

On one line, introduce a variable called four of type int, and bind it to a fully parenthesized expression that
computes the value of “five times six”.

On the next line, print the value, labeled. That is, type: System.out.println("four = " + four);

Run your program.

On one line, introduce a variable called five of type double, and bind it to a fully parenthesized expression
that computes the value of “one-half of fifty-five”.

On the next line, print the value, labeled. That is, type: System.out.println("five = " + five);

Run your program. Please be sure to check your answer! Precisely, what is one-half of fifty-five?
On one line, introduce a variable called six of type double, and bind it to a fully parenthesized expression
that computes the value of “one-third of sixty-five”.

On the next line, print the value, labeled. That is, type: System.out.println("six = " + six);

Run your program.

On one line, making good use of previously bound variables, introduce a variable called seven of type double,
and bind it to a fully parenthesized expression that computes the value of “one-half of fifty-five plus one-third
of sixty-five”.

129

12.
13.

On the next line, print the value, labeled. That is, type: System.out.println("seven = " + seven);
Run your program.

Task 5: Computations based on simple geometric/algebraic conceptions

1.

10.
11.

12.
13.

FYI, items in this task will ask you to add more pairs of statements to the ExpressionsThing program. The
first statement of each pair is supposed to introduce a variable and bind it to a solution to simple geometric or
algebraic problem. The second statement of the pair is merely supposed to display the value of the expression,
reasonably labelled.

. On one line, introduce a variable called eight of type double, and bind it to a fully parenthesized expression

that computes the value of the area of a circle of radius 11.3, using 3.14 for PI. (For this item, please use (
PI * (R * R)) as the model for computing the area of a circle of radius R).

On the next line, print the value, labeled. That is, type: System.out.println("eight = " + eight);

Run your program.

On one line, introduce a variable called nine of type double, and bind it to a fully parenthesized expression
that computes the value of the area of a square of side 27.7. (For this item, please use (8 * S) as the model
for computing the area of a square of side length S).

On the next line, print the value, labeled. That is, type: System.out.println("nine = " + nine);

Run your program.

On one line, making good use of previously bound variables, introduce a variable called ten of type double,
and bind it to a fully parenthesized expression that computes the average value of the area of a circle of radius
11.3 and the area of a square of side 27.7.

On the next line, print the value, labeled. That is, type: System.out.println("ten = " + ten);

Run your program.

On one line, introduce a variable called eleven of type double, and bind it to a fully parenthesized expression
that computes 17 percent of 243.5.

On the next line, print the value, labeled. That is, type: System.out.println("eleven = " + eleven);
Run your program.

Task 6: Simple computations to solve Crypto problems

1.

10.
11.

FYI, items in this task will ask you to add yet more pairs of statements to the ExpressionsThing program. The
first statement of each pair is supposed to introduce a variable and bind it to a solution to a Crypto problem.
The second statement of the pair is merely supposed to display the value of the expression, reasonably labelled.
Please don’t forget that a solution to a Crypto problem is a fully parenthesized arithmetic
expression!

On one line, introduce a variable called twelve of type int, and bind it to a fully parenthesized expression
that uses the numbers 3 and 3 as sources and that evaluates to the number 1 as goal.

On the next line, print the value, labeled. That is, type: System.out.println("twelve = " + twelve);
Run your program.

On one line, introduce a variable called thirteen of type int, and bind it to a fully parenthesized expression
that uses the numbers 4 and 7 and 2 as sources and that evaluates to the number 1 as goal.

On the next line, print the value, labeled. That is, type: System.out.println("thirteen = " + thirteen);
Run your program.

On one line, introduce a variable called fourteen of type int, and bind it to a fully parenthesized expression
that uses the numbers 1 and 3 and 7 and 9 as sources and that evaluates to the number 4 as goal.

On the next line, print the value, labeled. That is, type: System.out.println("fourteen = " + fourteen);
Run your program.

On one line, introduce a variable called fifteen of type int, and bind it to a fully parenthesized expression
that uses the numbers 2 and 2 and 4 and 6 and 8 as sources and that evaluates to the number 5 as goal.

130

12.
13.

On the next line, print the value, labeled. That is, type: System.out.println("fifteen = " + fifteen);
Run your program.

Task 7: Start creating a ShapesThing program

1.

2.

3.

4.

Create a package...

(a) Right click on the src folder and create a new Package.
(b) In the window that appears, call your package shapes and click OK.

Create a source program ...

(a) Right click on the shapes package and create a new Java Class.
(b) On the New Java Class form that appears ...

i. Type ShapesThing into the Name field.

ii. Select Class if it isn’t already.

iii. Press the(Enter)key on the keyboard.

Write a multiline comment at the start of the file containing something reasonable, something to suggest the fact
that this program affords opportunities to explore the computational solution to simple geometrical problems
by means of the construction and use of basic shapes.

Create an empty main method. Look to previous lab source files for what the main method declaration should
look like.

Task 8: Computations on a square

1.

Add a line of code that introduces a variable called square of type SSquare, and bind it to a new square of
side 400.

Add the following line of code to your program, and then run your program:

System.out.println("square = " + square.toString());

Add the following line of code to your program, and then run your program:

System.out.println("area of square = " + square.area());

. Using the previous item as a model, add a line of code to compute and print the perimeter of the square. Then

run your program. (No use of the four basic arithmetic operators allowed! Where would you look in this lab
manual which might help?)

Using the previous two items as models, add a line of code to compute and print the diagonal of the square.
Then run your program. (No use of the four basic arithmetic operators allowed! Where would you look in this
lab manual which might help?)

Task 9: Computations on a circle

1.

Add the following code to establish a circle called disk of type SCircle and bind it to the inscribing circle of
the variable to which square is bound.

SCircle disk = square.inscribingCircle();

Add the following line of code to your program, and then run your program:

System.out.println("disk = " + disk.toString());

Working by analogy with the code to compute and display the area of the square, compute and display the
area of the disk. Run the program.

. Working by analogy with the code to compute and display the perimeter of the square, compute and display

the perimeter of the disk. Run the program.

131

Task 10: Computations on another square

1.

Add a line of code to establish a square called diamond of type SSquare and bind it to the inscribing square of
the disk

. Add the following line of code to your program, and then run your program:

System.out.println("diamond = " + diamond.toString());
Write code to compute and display the area of the diamond. Run the program.

Task 11: Post your code and associated demos to your work site

Create a space on your work site to represent the work that you have done for this lab. To do this, please open the
index.html file of your CS1WorkSite directory in the Emacs text editor, and copy the clump of code associated with
Lab 1 to a point just after the clump of code associated with Lab 3. Then appropriately edit this code. (Working
in this fashion, you are more likely to faithfully adhere to the proper format for your CS1 work site than if you just
type from scratch.) Broken down a bit, here is what you will want to do:

. Edit the index.html file (in the manner suggested above) so that it properly represents Lab 4. You will want

to be sure to arrange for this clump of code (the clump associated with Lab 4) to reference the four relevant
files for this lab: appropriate versions of the source and demo for ExpressionsThing and for ShapesThing.
Use IntelliJ to generate the .html version of the ExpressionsThing. java. If you’ve done it correctly, it will
place the file inside a folder called expressions inside your CS1WorkSite folder. Check to make sure the link
works on your work site!

Use IntelliJ to generate the .html version of the ShapesThing. java. If you've done it correctly, it will place
the file inside a folder called shapes inside your CSiWorkSite folder. Check to make sure the link works on
your work site!

. Carefully, working in the manner prescribed in your previous lab, create a Standard IO demo file for the

ExpressionsThing program, and place it in the expressions folder of your work site work area. Check to
make sure the link works on your work site!

Carefully, working in the manner prescribed in your previous lab, create a Standard IO demo file for the
ShapesThing program, and place it in the shapes folder of your work site work area. Check to make sure the
link works on your work site!

Task 12: Reflection

Think for a little while about this lab and your engagement with it. What did you learn that is conceptually signifi-
cant? What did you learn that is technologically useful? What is your most salient thought about the lab and your
engagement with it?

132

19 Lab 5: An Interpreter Featuring Loop Forever and Selection

Albert Einstein on TEACHING

Example isn’t another way to teach. It is the only way to teach.

Overview

For this lab you will be asked to write a sequence of three interpreters. An interpreter is a program that recognizes
and responds to commands. The interpreters will display dots of various colors in a window. Input will be obtained
through one kind of dialog box. Output associated with a HELP command, as well as error messages, will be displayed
through another kind of dialog box.

Why do it?
In this lab you will gain experience in doing the following things:

Writing an interpreter, complete with a HELP command and an error reporting mechanism.
Iterating by means of a loop forever construct.

Making use of a break statement to escape from a loop forever construct.

Coding a multiway conditional construct.

Working from a previous program to create a new program.

Creating random colors!

S Tt W=

Task 1: Get ready to do some work

1. Log on to a sanctioned machine.
2. Open IntelliJ.
3. Open the CS1 project, if need be.

Task 2: Create an Interpreterl program

1. Create a package...

(a) Right click on the src folder and create a new Package.
(b) In the window that appears, call your package interpreters and click OK.

2. Create a source program...

(a) Right click on the interpreters package and create a new Java Class.
(b) On the New Java Class form that appears ...

133

0~ O U W N

SO R R R R R R L0 0 0 W W W W W LW LWN)RNRNDN DD DN NN R e e e e e e
NN OO U W OO Uk WNDRFE OO0 IR WNRFE O OO0 Ut WwNn = O ©o

i. Type Interpreterl into the Name field.
ii. Select Class if it isn’t already.

iii. Press the(Enter)key on the keyboard.
3. Edit the template so that it looks like the following:

Interpreterl Program

/

This interpreter is intended to paint different colored dots in a window.

The commands that the interpreter can recognize and respond to are:

* X X X X X ¥ X *
|

BLUE:
RED:

HELP:
EXIT:

paint a blue dot
paint a red dot

show a list of the commands in a dialog message box

terminate the program

package interpreters;

import
import
import
import
import

public

java.awt.Color;
javax.swing.JOptionPane;
javax.swing.SwingUtilities;
painter.SPainter;
shapes.SCircle;

class Interpreterl {

private void interpreter () {

//

CREATE OBJECTS TO THINK WITH

SPainter miro = new SPainter ("Dot Thing" ,400,400);
miro.setScreenLocation(0,0);
SCircle dot = new SCircle(180);

//

REPEATEDLY TAKE A COMMAND FROM AN INPUT DIALOG BOX

while (true) {

String command = JOptionPane.showInputDialog(null,
if (command == null) { command = "exit"; } // user clicked on Cancel

if (command.equalsIgnoreCase("blue")) {
miro.setColor (Color .BLUE);
miro.paint (dot);

} else if (command.equalsIgnoreCase("red")) {
miro.setColor (Color.RED);
miro.paint (dot);

} else if (command.equalsIgnoreCase("help")) {

AND INTERPRET IT

"Command?") ;

JOptionPane.showMessageDialog(null,"Valid commands are: "

+ "RED | BLUE | HELP | EXIT ");
} else if (command.equalsIgnoreCase("exit")) {
miro.end () ;

System.out.println("Thank you for viewing the dots ...");
break;

} else {
JOptionPane.showMessageDialog(null, "Unrecognizable command:

+ command.toUpperCase ());

134

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

}
// INFRASTRUCTURE FOR SOME SIMPLE PAINTING

public Interpreterl() {
interpreter ();

3

public static void main(Stringl[] args) {
SwingUtilities.invokeLater (new Runnable () {
public void run() {
new Interpreterl();
}
IO

4. Read the program, doing your best to understand what it does and how it does what it does.
5. Run the program, providing it with the following commands (one at a time): RED BLUE GREEN RED BLUE HELP
RED BLUE EXIT

Task 3: Create an Interpreter2 program

1. Create a source program ...

(a) Right click on the interpreters package and create a new Java Class.
(b) On the New Java Class form that appears ...
i. Type Interpreter2 into the Name field.
ii. Select Class if it isn’t already.
iii. Press the(Enter)key on the keyboard.

2. Completely replace the text of this Interpreter2 program with the text of the Interpreterl program.

3. Appropriately change the token Interpreterl to the token Interpreter2 throughout the program. (Note
that there are three instances to be changed!)

4. Run the Interpreter2 program, just to make sure that it is working like the Interpreterl program.

5. Now, modify the program so that it can interpret two more commands: GREEN and YELLOW. In doing so, be
sure to:

(a) Edit the opening comment of the program appropriately
(b) Add two cases to the multiway conditional statement
(¢) Add the two commands to the HELP mechanism.

6. Run the program, being sure to try out the new commands. Give the revised HELP command a look, as well.

135

Task 4: Create an Interpreter3 program

1. Create a source program ...

(a) Right click on the interpreters package and create a new Java Class.
(b) On the New Java Class form that appears ...
i. Type Interpreter3 into the Name field.
ii. Select Class if it isn’t already.
iii. Press the(Enter)key on the keyboard.

2. Completely replace the text of this Interpreter3 program with the text of the Interpreter2 program. by
doing the following:

3. Appropriately change the token Interpreter2 to the token Interpreter3 throughout the program. (Note
that there are three instances to be changed!)

4. Run the Interpreter3 program, just to make sure that it is working like the Interpreter2 program.

5. Now, modify the program so that it can interpret one more command: RANDOM. In doing so:

(a) Edit the opening comment of the program appropriately
(b) Implement the new command by doing the following:
i. Add the following case to the multiway conditional statement:

1 3} else if (command.equalsIgnoreCase("random")) {
miro.setColor (randomColor ());
3 miro.paint (dot);

[\

ii. Notice that randomColor () isred. IntelliJ likes to use red text and red underlines to indicate problems.
Click on the red text.

iii. Use the light bulb which appears (after about a second) to create a method stub for the randomColor ()
method. A stub is simply a method with essentially no body. When you click the light bulb one of
the options should be something like Create method ‘randomColor’ in ‘Interpreter3’. Use that one.

iv. Edit the randomColor () method so that it appears as follows:

private static Color randomColor () {
int rv = (int) (Math.random () *256);
int gv = (int) (Math.random ()*256);
int bv (int) (Math.random () *256) ;
return new Color(rv,gv,bv);

Y U W N~

(¢) Add the new command to the HELP mechanism.

6. Run the program, being sure to try out the new command. Give the revised HELP command a look, as well.

136

Task 5: Post your code and selected demos to your work site

Create a space on your work site to represent the work that you have done for this lab. To do this, please open the
index.html file of your CS1WorkSite directory in the Emacs text editor, and copy the clump of code associated with
Lab 4 to a point just after the Lab 4 clump of code. Then appropriately edit this code. (Working in this fashion, you
are more likely to faithfully adhere to the proper format for your CS1 work site than if you just type from scratch.)
Broken down a bit, here is what you will want to do:

© oo

. Edit the index.html file (in the manner suggested above) so that it properly represents Lab 5. You will want to

be sure to arrange for this clump of code (the clump associated with Lab 5) to reference at least seven files: the
.html version of the Interpreterl.java program, the .html version of the Interpreter2. java program, and
the .html version of the Interpreter3. java program, and at least four separate snapshots which, minimally,
capture a colored dot in a canvas, an input dialog box, an error message dialog box, and a help menu dialog
box. Perhaps it would be most interesting to generate these with the third version of the program. Some
context (regular text) for the links (hypertext) might be a very good ideal

Place the .html version of the Interpreterl.java program in the interpreters folder. Check to make sure
the link works on your work site!

Place the .html version of the Interpreter2. java program in the interpreters folder. Check to make sure
the link works on your work site!

Place the .html version of the Interpreter3. java program in the interpreters folder. Check to make sure
the link works on your work site!

Carefully, working by analogy with the posting of the blue dot (refer back to Lab 3 if you need to), add to your
work site a randomly colored dot canvas image that was generated by your Interpreter3 program.

Add to your site a reference to an image of an input dialog box.

Add to your site a reference to an image of a message dialog box that displays a HELP message.

Add to your site a reference to an image of a message dialog box that displays an error message.

As always, check to make sure the links are working as desired.

Task 6: Reflection

Think for a little while about this lab and your engagement with it. What did you learn that is conceptually signifi-
cant? What did you learn that is technologically useful? What is your most salient thought about the lab and your
engagement with it?

137

138

20 Lab 6: Functions and Commands

Abelson and Sussman on PROCEDURAL PROGRAMMING

The computer revolution is a revolution in the way we think and in the way we express what we think. The essence
of this change is the emergence of what might best be called procedural epistemology - the study of the structure
of knowledge from an imperative point of view, as opposed to the more declarative point of view taken by classical
mathematical subjects.

Simon Peyton Jones on FUNCTIONAL PROGRAMMING

When the limestone of imperative programming has worn away, the granite of functional programming will be re-
vealed underneath!

Pictorial preview of things/thinks to come

IJ

Overview

For this lab you will be asked to write one program that features functions and one program that features commands.
A function is a method that is characterized by the return of a value. Any actions performed during execution of the
method are performed in the service of computing the value to be returned. A command is a method that is char-
acterized by performing some action. Any values that are computed during execution of the method are computed
in the service of performing the action. You will be asked to mindfully engage in the process of stepwise refinement
as you prepare the first two programs for execution. Finally, you will be asked to perform a simple program alteration.

139

Why do it?

In this lab you will gain experience in doing the following things:

Defining and using functions.

Defining and using commands.

Program construction by means of stepwise refinement.
Program modification.

Iteration using the while statement.

S Tt W=

Conditional execution using the if statement.

Task 1: Get ready to do some work

1. Log on to a sanctioned machine.
2. Open IntelliJ.
3. Open the CS1 project, if need be.

Task 2: Create a SurfaceAreaOfCube program

1. Create a package...

(a) Right click on the src folder and create a new Package.
(b) In the window that appears, call your package mathematics and click OK.

2. Create a source program...

(a) Right click on the mathematics package and create a new Java Class.
(b) On the New Java Class form that appears ...

i. Type SurfaceAreaOfCube into the Name field.

ii. Select Class if it isn’t already.

iii. Press the(Enter)key on the keyboard.
3. Edit the template so that it looks like the accompanying program. Do this in the following manner:

(a) Write the multiline comment at the start of the file appropriately.

(b) Create an empty main method, then edit it appropriately.

(¢) Making good use of the red text and light bulbs, let IntelliJ help you to create both stubs: the one for
the edgeLength method and the one for the surfaceArea method.

(d) Edit the edgeLength method. Notice that Scanner is colored red. Click on it and do as IntelliJ suggests
to import the Scanner class.

(e) Edit the surfaceArea method. Let IntelliJ import the SSquare class as you do.

140

Program: SurfaceAreaOfCube

1 /%

2 * Program that features two functions to compute the surface area of a cube.
3 * - The edge length will be read from the standard input stream.
4 * - The surface area will be printed to the standard output stream.
5 * - A face of the cube will be modeled as a simple square.

6 x/

7

8 package mathematics;

9

10 import java.util.Scanner;

11 import shapes.SSquare;

12

13 public class SurfaceAreaOfCube {

14

15 public static void main(String[] args) {

16 double edgelength = edgelength();

17 double surfaceArea = surfaceArea(edgelength);

18 System.out.println("surface area = " + surfacelArea);

19 X

20

21 private static double edgelLength() {

22 System.out.print ("Please enter the edge length of the cube: ");
23 Scanner scanner = new Scanner (System.in);

24 double edgelength = scanner.nextDouble ();

25 return edgelength;

26 }

27

28 private static double surfaceArea(double edgelLength) {

29 SSquare face = new SSquare(edgelength);

30 int nrO0fFaces = 6;

31 double surfaceArea = face.area() * nrOfFaces;

32 return surfacelArea;

33 }

34

35 %

4. Run the program to compute and print the surface area of a cube of edge length 7.5 units.
5. Run the program to compute and print the surface area of a cube of edge length 12.95 units.

Task 3: Thinking on stepwise refinement

To be productive in what you do, you generally want to become one with your tools. That is, you want to learn to
make use of your tools in a natural, effective, efficient manner. One way that you can make good use of IntelliJ is
to, more often than not, write your programs with the principle of stepwise refinement in mind. Just think on these
things before continuing on with the next task in this lab:

141

00 O Uik WK

R RN N N DK o e e e e e
QU W N O OO Uk W~ OO

1. According to the principle of stepwise refinement, you craft a solution to a problem at a level of abstraction
which affords naturalness of expression with respect to the problem domain and the application of powerful
cognitive operators. If the solution incorporates abstractions, which is normally the case, you then refine the
abstractions by rendering them real in some sense. The term stepwise refers to the fact that refinement of an
abstraction at one level may introduce further abstractions at the next level.

2. In the SurfaceArea0fCube program, a solution to the problem was coded in the main method which introduced
two abstractions, the edgeLength method and the surfaceArea method. Each of these methods was, in turn,
refined by defining the methods.

3. Note that the process of stepwise refinement was facilitated by the mechanism in IntelliJ for automatically gen-
erating stubs for the methods by means of handy light bulbs which appear from time to time with suggestions
for how you might like to proceed. Making appropriate, judicious use of these suggestions is one way that you
work in a natural, efficient manner with IntelliJ.

Task 4: Create a Balloons program
Establish a source program template ...

1. Right click on the npw package and create a new Java Class.
2. On the New Java Class form that appears ...

(a) Type Balloons into the Name field.

(b) Select Class if it isn’t already.

(¢) Press the(Enter)key on the keyboard.

3. Edit the template so that it looks like the accompanying program. Be sure to work with IntelliJ in order to
accomplish this task in a manner that is consistent with the principle of stepwise refinement!

Program: Balloons

/%
* Program that paints 100 red, yellow and orange balloons in a blue sky.
* Tt will feature commands.

*/
package npw;

import java.awt.Color;

import java.util.Random;

import javax.swing.SwingUtilities;
import painter.SPainter;

import shapes.SCircle;

import shapes.SSquare;

public class Balloons {
// REQUIRED INFRASTRUCTURE
public Balloons () {
paintTheImage ();
3
public static void main(String[] args) {

SwingUtilities.invokeLater (new Runnable() {
public void run() {

142

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
95
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

new

)

// THE PAINTER D

private void pai
SPainter pai
paintSky (pai
int nr0fBall
paintBalloon

}

private void pai
painter.setC
SSquare sky

Balloons () ;

OING ITS THING

ntTheImage () {

nter = new SPainter("Balloons", 600, 600);

nter); // ask IntelliJ to generate the stub

oons = 100;

s (painter ,nr0fBalloons); // ask IntelliJ to generate the stub

ntSky (SPainter painter) {
olor(Color.BLUE);
= new SSquare (2000);

painter.paint (sky);

private void pai
int i = 1;
while (i <=
paintOne
i=1i+

3

private void pai
Random rgen

ntBalloons (SPainter painter, int nr0fBalloons) {

nr0fBalloons) {
Balloon(painter); // ask IntelliJ to generate the stub
1

ntOneBalloon (SPainter painter) {
= new Random();

int rn = rgen.nextInt (3);
if (rn == 0) {
painter.setColor (Color.RED);
} else if (rn == 1) {
painter.setColor (Color.0ORANGE);
} else {
painter.setColor(Color.YELLOW);
}

painter .move
int balloonR
SCircle ball

OR
adius = 20;
oon = new SCircle(balloonRadius);

painter.paint (balloon);

painter.setC
painter.draw

olor (Color.BLACK);
(balloon);

4. Run the program.

143

Task 5: Create a AlternateBalloons program
Establish a source program template ...

1. Right click on the npw package and create a new Java Class.
2. On the New Java Class form that appears ...

(a) Type AlternateBalloons into the Name field.
(b) Select Class if it isn’t already.

(c) Press the(Enter)key on the keyboard.

3. Replace all of the code in the AlternateBalloons program with all of the code in the Balloons program.

4. Then, edit the AlternateBalloons program in such a way that 300 balloons, each of radius 30, of 6 different
“nameless” colors, will randomly populate the sky. By nameless I don’t meant that you can’t imagine a name
for the color, but merely that you must use a color constructor to obtain the color since there is not predefined
name for it in Java. (Please don’t forget to modify the leading comment.)

5. Run the program.

Task 6: Post your code and selected demos to your work site

Work by analogy with the way that you have posted artifacts to your site for previous labs. In brief, you will need
to:

1. Edit the index.html file of your CS1WorkSite directory.

2. You will need to create two files for the SurfaceArea0fCube program, one for the source program, and one for
the Standard IO demo.

3. You will need to create two files for the Balloons program, one for the source program, and one for the image.

4. You will need to create two files for the AlternateBalloons program, one for the source program, and one for
the image.

Task 7: Reflection

Think for a little while about this lab and your engagement with it. What did you learn that is conceptually signifi-
cant? What did you learn that is technologically useful? What is your most salient thought about the lab and your
engagement with it?

144

21 Lab 7: String Thing

Kernighan and Pike on “RUBBER DUCKING”

Another effective [debugging] technique is to explain your code to someone else. This will often cause you to explain
the bug to yourself. Sometimes it takes no more than a few sentences, followed by an embarrassed “Never mind, I see
what’s wrong. Sorry to bother you.” This works remarkably well; you can even use non-programmers as listeners.
One university computer center kept a teddy bear near the help desk. Students with mysterious bugs were required
to explain them to the bear before they could speak to a human counselor.

Overview

This lab features two programs. The first program, String0Ops, which you will merely type in and run, provides
you with an opportunity to get acquainted with some basic character string processing functionality. The second
program, StringThing, provides you with an opportunity to write some character string processing code.

Why do it?
As you work through this lab you will:

1. Get acquainted with some basic character string processing functionality.

2. Solve some simple problems in the context of character string programming.

3. Perform abstraction by writing methods, by introducing names (parameters) to stand for instances of data
items.

Task 1: Prepare to do the Java programming for this lab in IntelliJ

1. Log on to a sanctioned machine.
2. Get into Intellil.
3. Open the CS1 project, if need be.

Task 2: Study (read/create/run/reflect upon) the accompanying StringOps program
1. Carefully read through the accompanying StringOps program.

2. Within a package called stringthing, establish a Java Class called StringOps. Then, enter the accompanying
program, just as it is presented here.

145

0O Ui Wi+

O R R R R R R R L0 0 W W W W W W LW LWRN)RNRNDN DD DN DN DN DN R e e e e e
CO T U WNHFHF OO Uk WD OO Ulkr W O OO0 Ut WwN—=O©o

The StringOps Program

/ *

* Program to illustrate some basic character string processing functiomnality.

*/
package stringthing;
public class StringOps {
public static void main(Stringl[] args) {

// ESTABLISH SOME STRINGS

String date = "Wednesday, October 18, 1995";
String time = "8 AM";
String lab = "String Thing";

// COMPUTE THE LENGTHS OF THE STRINGS
int datelength = date.length();

int timeLength time.length();

int labLength = lab.length();

System.out.println("\ndatelLength = " + datelength);
System.out.println("timelLength = " + timelLength);
System.out.println("labLength = " + labLength);

// COMPUTE SOME POSITIONS
int pl = date.indexQ0f(",");
int p2 = time.index0f (" ");

int p3 = lab.index0f ("ing");
System.out.println("\npl = " + pl);
System.out.println("p2 = " + p2);
System.out.println("p3 = " + p3);

// COMPUTE SOME 2 ARGUMENT SUBSTRING VALUES

System.out.println("\ndate.substring(0,9) = " + date.substring(0,9));
System.out.println("time.substring(2,4) = " + time.substring(2,4));
System.out.println("lab.substring(7,8) = " + lab.substring(7,8));

// COMPUTE SOME 1 ARGUMENT SUBSTRING VALUES

System.out.println("\ndate.substring(11) = " + date.substring(11));
System.out.println("time.substring(2) = " + time.substring(2));
System.out.println("lab.substring(7) = " + lab.substring(7));

// CREATE A STRING
String line = date + " | " + time + " | " + lab;

System.out.println("\nline = + line);

3. Run the program.

4. Change the date in the first executable statement to today’s date, and the time in the second executable

146

statement to the current time.
5. Again, run the program.

6. Reflect upon the program and its output. As you do, take a few minutes to infer some of the string processing
functionality and write down answers to the following questions. Thinking about the answers to these
questions is one of the most important parts of this lab — try to work independently on this!

(a) What does the length function do? Simply write a brief description of the length function.

(b) What does the index0f function do? Simply write a brief description of the index0f function.

(¢c) What does the substring function which takes two parameters do? Simply write a brief description of
the substring function which takes two parameters.

(d) What does the substring function which takes one parameter do? Simply write a brief description of the
substring function which takes one parameters.

(e) What does the “plus operator”, aka the concatenation operator do? Simply write a brief description of
this workhorse string processing operator.

147

0~ O U W N

Task 3: Prepare to refine (complete) the accompanying StringThing program

1. Carefully read through the accompanying StringThing program.

2. Within your package called stringthing, establish a Java Class called StringThing. Then, enter the program
just as it is presented here. After completing this task, you will add to the StringThing class in subsequent
tasks so do not flesh out the points in the program yet!

The StringThing Program

/*

* This program will do a bit of character string processing.

*/

package stringthing;

public class StringThing {

public static void main(String[] args) {

// POINT A: CREATE A PRINT SOME STRINGS THAT REPRESENT NAMES
// String singer = "Holiday, Billie";
// String sculptor = "Claudel, Camille";

// POINT B: COMPUTE AND PRINT THE LENGTHS OF THE STRINGS, WITHOUT
// LABELS

// POINT C: COMPUTE AND PRINT THE LOCATION OF THE COMMA WITHIN
// EACH STRING, NO LABELS

// POINT D: COMPUTE AND PRINT THE FIVE FIRST NAMES, WITH NO LABELS
// POINT E: COMPUTE AND PRINT THE FIVE LAST NAMES, WITH NO LABELS

// POINT F: COMPUTE AND PRINT THE FIRST NAMES, AGAIN

// System.out.println("\nFirst names, once again ...");
// System.out.println(firstName (singer));

// System.out.println(firstName (sculptor));

// System.out.println(firstName (painter));

// System.out.println(firstName (dancer));

// System.out.println(firstName (self));

// POINT G: COMPUTE AND PRINT THE LAST NAMES, AGAIN

// System.out.println("\nLast names, once again ...");
// System.out.println(lastName (singer));

// System.out.println(lastName (sculptor));

// System.out.println(lastName (painter));

// System.out.println(lastName (dancer));

// System.out.println(lastName (self));

// POINT H: COMPUTE AND PRINT THE FULL NAMES, NATURAL STYLE
// System.out.println ("\nFull names, natural style ...");
// System.out.println(fullName (singer));

148

43
44
45
46
47
48
49
50

//
//
//
//

System.out.println(fullName (sculptor));
System.out.println(fullName (painter));
System.out.println(fullName (dancer));
System.out.println(fullName (self));

Task 4: Point A programming

1.

Toggle the comments on the two lines following the Point A comment.

2. Add a line of code which introduces a variable called painter and binds it to "Picasso, Pablo" - the directory

style string representation of Pablo Picasso.

. Add a line of code which introduces a variable called dancer and binds it to "Zotto, Osvaldo" - the directory

style string representation of Osvaldo Zotto.

Add a line of code which introduces a variable called self and binds it to your directory style name.

Add the following line of code: System.out.println("\nNames ...");

Add five lines of code, one to print each of the five name strings (unlabelled), being sure to do so by referencing
the name strings through the variables to which they are bound.

Run the program.

Task 5: Point B programming

For this task you will want to use the length method of the String class. If you should need a hint for how to do
this, simply look at the part of the String0Ops program that computes string lengths.

1.

Introduce a variable called singerLength and bind it to the length of the name string of the singer. Be sure
to arrange for the computer to compute the length. (Be sure not to do it yourself by counting!)

. Introduce a variable called sculptorLength and bind it to the length of the name string of the sculptor. Be

sure to arrange for the computer to compute the length. (Be sure not to do it yourself by counting!)
Introduce a variable called painterLength and bind it to the length of the name string of the painter. Be sure
to arrange for the computer to compute the length. (Be sure not to do it yourself by counting!)

. Introduce a variable called dancerLength and bind it to the length of the name string of the dancer. Be sure

to arrange for the computer to compute the length. (Be sure not to do it yourself by counting!)

Introduce a variable called selfLength and bind it to the length of your name string. Be sure to arrange for
the computer to compute the length. (Be sure not to do it yourself by counting!)

Add the following line of code: System.out.println("\nName lengths ...");

Add five lines of code, one to print the length of each of the five name string lengths (unlabelled), being sure
to do so by referencing the lengths through the variables to which they are bound.

Run the program.

Task 6: Point C programming

For this task you will want to use the index0f method of the String class. If you should need a hint for how to do
this, simply look at the part of the String0Ops program that computes string lengths.

1.

Introduce a variable called singerCommaPosition and bind it to the position of the comma in the singer’s
name string. Be sure to arrange for the computer to compute the position of the comma.

149

Introduce a variable called sculptorCommaPosition and bind it to the position of the comma in the sculptor’s
name string. Be sure to arrange for the computer to compute the position of the comma.

Introduce a variable called painterCommaPosition and bind it to the position of the comma in the painter’s
name string. Be sure to arrange for the computer to compute the position of the comma.

Introduce a variable called dancerCommaPosition and bind it to the position of the comma in the dancer’s
name string. Be sure to arrange for the computer to compute the position of the comma.

Introduce a variable called selfCommaPosition and bind it to the position of the comma in your name string.
Be sure to arrange for the computer to compute the position of the comma.

Add the following line of code: System.out.println("\nComma positions ...");

Add five lines of code, one to print each of the five comma positions (unlabelled), being sure to do so by
referencing the comma positions through the variables to which they are bound.

Run the program.

Task 7: Point D programming

For this task you will want to use the 1 argument substring method of the String class. If you should need a hint
for how to do this, simply look at the part of the StringOps program that makes use of the substring method with
1 argument. Do not count and do not insert a number into the substring argument — be sure to use the
relevant variable that was bound in Task C of this program.

1.

Introduce a variable called singerFirst and bind it to the first name of the singer. Be sure to arrange for the
computer to compute the first name.

Introduce a variable called sculptorFirst and bind it to the first name of the sculptor. Be sure to arrange
for the computer to compute the first name.

. Introduce a variable called painterFirst and bind it to the first name of the painter. Be sure to arrange for

the computer to compute the first name.

Introduce a variable called dancerFirst and bind it to the first name of the dancer. Be sure to arrange for
the computer to compute the first name.

Introduce a variable called selfFirst and bind it to your first name. Be sure to arrange for the computer to
compute the first name.

Add the following line of code: System.out.println("\nFirst names ...");

Add five lines of code, one to print each of the five last names (unlabelled), being sure to do so by referencing
the comma positions through the variables to which they are bound.

Run the program.

Task 8: Point E programming

For this task you will want to use the 2 argument substring method of the String class. If you should need a hint
for how to do this, simply look at the part of the StringOps program that makes use of the substring method with
2 arguments. Do not count and do not insert a number (besides 0) into the substring argument — be
sure to use the relevant variable that was bound in Task C of this program.

1.

Introduce a variable called singerLast and bind it to the last name of the singer. Be sure to arrange for the
computer to compute the last name.

Introduce a variable called sculptorLast and bind it to the last name of the sculptor. Be sure to arrange for
the computer to compute the last name.

Introduce a variable called painterLast and bind it to the last name of the paitner. Be sure to arrange for
the computer to compute the last name.

Introduce a variable called dancerLast and bind it to the last name of the dancer. Be sure to arrange for the
computer to compute the last name.

Introduce a variable called selfLast and bind it to your last name. Be sure to arrange for the computer to
compute the last name.

150

6.
7.

8.

Add the following line of code: System.out.println("\nLast names ...");

Add five lines of code, one to print each of the five last names (unlabelled), being sure to do so by referencing
the comma positions through the variables to which they are bound.

Run the program.

Task 9: Point F programming

1.
. Use the red text and light bulb to create a stub for the firstName method.

Toggle the comments on the six lines following the Point F comment.

Note that IntelliJ guessed at the type of the firstName method we wish to define, but got it wrong with
respect to our intentions. IntelliJ also did its best to come up with a reasonable name for the parameter, but
came up short on this count too. You should take this opportunity to adjust its guesses by doing the following:

(a) Change the type of the method from boolean to String.
(b) Change the name of the parameter to directoryStyleName.

What will be the value of the parameter, directoryStyleName, when the firstName method is called with
the name of the singer? Please write it down.

What will be the value of the parameter, directoryStyleName, when the firstName method is called with
the name of the dancer? Please write it down.

Fill in the body of the firstName method so that it computes and returns the first name of the individual whose
name is given by the parameter. Please note that you will find the first name by looking to the parameter!
Run the program.

Task 10: Point G programming

1.

Toggle the comments on the six lines following the Point G comment.

2. Use the red text and light bulb to create a stub for the lastName method.

Edit the header of the lastName method in just the same manner that you previously edited the header of the
firstName method.

What will be the value of the parameter, directoryStyleName, when the lastName method is called with the
name of the singer? Please write it down.

What will be the value of the parameter, directoryStyleName, when the lastName method is called with the
name of the dancer? Please write it down.

Fill in the body of the lastName method so that it computes and returns the last name of the individual whose
name is given by the parameter. Please note that you will find the last name by looking to the parameter!
Run the program.

151

Task 11: Point H programming

1.
. Use the red text and light bulb to create a stub for the fullName method.

Toggle the comments on the six lines following the Point H comment.

Change the type of the fullName method to String and change the name of the parameter of the fullName
method to dsn.

. What will be the value of the parameter, dsn, when the fullName method is called with the name of the singer?

Please write it down.

What will be the value of the parameter, dsn, when the fullName method is called with the name of the
dancer? Please write it down.

Fill in the body of the fullName method so that it computes and returns the full name - first name followed by
a space followed by the last name - of the individual whose name is given by the parameter. CONSTRAINT:
It is required that you use both the firstName method and the lastName method to define the
fullName method.

Run the program.

Task 12: Post your work

Please post your work for this lab on you Web site. Simply, post the source code and the demo for each of the two
featured programs.

Task 13: Reflection

Think for a little while about this lab and your engagement with it. What did you learn that is conceptually signifi-
cant? What did you learn that is technologically useful? What is your most salient thought about the lab and your
engagement with it?

152

22 Lab 8: Array Play

F. Herbert (First Law of Mentat in DUNE) on UNDERSTANDING PROCESSES

A process cannot be understood by stopping it. Understanding must move with the flow of the process, must join
and flow with it.

Overview

This lab features three programs. The first two programs, Primes and Streets, are merely intended to help you
to wrap your minds around the basics of array creation and array element referencing. Basically, you will read the
Primes program and write, by analogy, the Streets program. The third program, ReverseCopy, features array
processing and illustrates file IO by solving a relatively realistic problem, that of reading words from one file and
writing them, in reverse order, to another file. This program can serve as a model for subsequent programs that you
write involving file IO. The program also contrasts use of the while statement and the for statement, introduces
you to the role that exceptions play in computer programming, and makes limited use of properties associated with
the System class.

Why do it?
As you work through this lab you will:

Get acquainted with basic array processing functionality.

Learn to appreciate basic concepts associated with doing simple file IO.

Perform some file processing - reading words from a file and writing words to a file.
Make use of system properties in your programming.

See how exceptions play a role in computer programming.

CL e

Task 1: Prepare to do the Java programming for this lab in IntelliJ

1. Log on to a sanctioned machine.
2. Get into Intellid.
3. Open the CS1 project, if need be.

Task 2: Study (read/create/run/reflect upon) the Primes program

The accompanying Primes program features an array of single digit primes. By design, the program doesn’t do much
of anything, in order that attention can be clearly focussed on the bare essentials of array processing.

1. Carefully read through the Primes program and the demo that follows it. (The line numbers are included for
ease of subsequent referencing.)

153

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30 ¥

Program: Primes (just the main method)

public static void main(String[] args) {

int [] primes = new int [4];

primes [0] = 2;

primes [1] = 3;

primes [2] = 5;

primes [3] = 7;

System.out.println("length of primes array = " + primes.length);
System.out.println("first prime = " + primes[0]);
System.out.println("last prime = " + primes/[3]);
System.out.println("last prime = " + primes[primes.length-1]);
System.out.println("\nThe initial array ...");

int i = 0;

while (i < primes.length) {
System.out.println(primes[i]);

i=1i+ 1
}

int temp = primes[0];

primes [0] = primes[primes.length-1];

primes [primes.length-1] = temp;
System.out.println("\nThe final array ...");

for (int x = 0; x < primes.length; x = x + 1) {
System.out.println(primes[x]);
}

Demo: Primes

length of primes array = 4
first prime = 2
last prime =7
last prime =7

The initial array ...

2

3
5
7

The final array ...

7

3
5
2

154

. Within a package called arrayplay, establish a Java Class called Primes with a reasonable lead comment (craft
a simple sentence that is appropriate) and the main method that has been provided.

. Run the program.

. Take a few minutes to answer the following questions:

(a) How does one declare an array variable in Java?

(b) How does one create an array object containing a certain number of elements in Java?

(¢c) How does one reference an element of an array in Java?

(d) How do you reference the length of an array in Java?

(e) What is the index of the first element of an array in Java?

(f) What is the index of the last element of an array in Java?

155

00 O Uik WK

== s
=W~ OO

Task 3: Write a Streets program, working by analogy with the Primes program

Write a program called Streets, bit by bit, according to the instructions which follow, working by analogy with the
Primes program. The Streets program will feature names of streets that you can walk in the French Quarter of
New Orleans.

1. Within the arrayplay package, establish a Java Class called Streets.

2. Change the lead comment to something reasonable.

3. Add a line to the main method of your Streets program to declare a String array called streets and bind
it to an array capable of storing 12 String objects. (Work by analogy with line 3 of the main method of the
Primes program, which creates an int array called primes capable of storing 4 int values.)

4. Place the following names of French Quarter streets into the streets array, in the order provided: "Iberville"
"Decatur" "Toulouse" "Bourbon" "Dauphine" "Royal" "St Ann" "St Peter" "Conti" "Exchange"
"Bienville" "Dumaine". (Work by analogy with lines 5-8 of the main method of the Primes program.)

5. Run the program.

6. Mimicking the code that appears in lines 10-13 of the main method of the Primes program, add statements to
the main method of the Streets program to display, labelled, the length of the featured array, the first element
of the featured array, and the last element of the featured array, twice.

7. Run the program.

8. Mimicking the code that appears in lines 15-20 of the main method of the Primes program, add statements to
the main method of the Streets program to display, labelled, the elements of the streets array.

9. Run the program.

10. Mimicking the code that appears in lines 22-24 of the main method of the Primes program, add statements to
the main method of the Streets program to swap the first element and the last element of the streets array.

11. Mimicking the code that appears in lines 26-29 of the main method of the Primes program, add statements to
the main method of the Streets program to display, labelled, the elements of the streets array.

12. Run the program.

Task 4: Study, implement, and run a program to reverse copy a disk file

Consider the following program. ReverseCopy reads words from one file and writes them in reverse order to a second
file. (In this instance, the line numbers are included merely so that you will be better able to refer to lines of the
program should you wish to discuss it with someone.)

Program: ReverseCopy
/ *

* Program featuring straight up arrays and file IO to read and reverse copy a lyric.

*/
package arrayplay;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.PrintWriter;

import java.util.Scanner;

public class ReverseCopy {

156

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
95
56
57
58
59
60
61
62
63
64
65
66
67
68

public static void main(String[] args)
throws FileNotFoundException, IOException {
String inputFileName = "ForeverYoung.text";
String outputFileName = "ForeverYoungReversed.text";
String[] words = readWordsFromFile (inputFileName) ;
writeWordsToFile (words ,outputFileName);

private static final int LIMIT = 1000;

private static String[] readWordsFromFile(String inputFileName)
throws FileNotFoundException {
// Equate a scanner with the input file
Scanner scanner = establishScanner (inputFileName) ;
// Read the words from the file into an oversized array
String[] temp = new String[LIMIT];

int index = 0;
while (scanner.hasNext()) {
String word = scanner.next();
temp [index] = word;
index = index + 1;
}
int wordCount = index;
// Transfer the words to a perfectly sized array
String[] words = new String[wordCount];
for (int x = 0; x < wordCount; x = x + 1) {
words [x] = temp[x];
}

// Return the words
return words;

}

private static void writeWordsToFile(String[] words, String outputFileName)

throws IOException {

// Equate a printer with an output file

PrintWriter printer = getPrintWriter (outputFileName);

// Print the words to the file

for (int x = words.length-1; x >= 0; x = x - 1) {
printer.println(words[x]);

}

printer.close ();

}

private static Scanner establishScanner (String inputFileName)
throws FileNotFoundException {
String fullFileName = createFullFileName (inputFileName) ;
return new Scanner (new File(fullFileName));

}

private static PrintWriter getPrintWriter (String outputFileName)
throws FileNotFoundException {
String fullFileName = createFullFileName (outputFileName) ;
PrintWriter printer = new PrintWriter (fullFileName) ;
return printer;

157

69
70
71
72
73
74
75
76
7
78
79
80
81
82
83

}
// Create the full file name for a simple file name, assuming that it
// will be found in the CS1Files/data subdirectory of the user’s
// home directory.
private static String createFullFileName (String fileName) {
String separator = System.getProperty("file.separator");
String home = System.getProperty("user.home");
String path = home + separator + "CS1Files" + separator +
"data" + separator;
String fullFileName = path + fileName;
return fullFileName;
}
}
Illustration

ForeverYoung.text ForeverYoungReversed.text

May you build a ladder to the stars —_— young
And climb on every rung Forever
May you stay stay
Forever young you
May
rung
every
on
climb
And
stars
the
to
ladder
a
build
you
May

Noteworthy aspects of this program

1. The partial file names are hard coded in the main method. This is done quite simply in order to focus without
distraction on certain essential aspects of file I0. It would be a simple matter to program a more flexible

mechanism for establishing file names.

2. Full file names are created very carefully, under the assumption that the input file will be found in the data
subdirectory of the CS1Files subdirectory of the user’s home directory, and that the output file will be placed

in that same directory.

3. Use of the principle of stepwise refinement is clearly reflected in the structure of the program, especially with

respect to the file 10.

4. A basic array is used to store the words, largely to emphasize the static nature of arrays, and by doing so set
the stage for developing a deep appreciation for the List objects that will be featured in the next lab. Words

are read into an oversized array and then transferred to a perfectly sized array.

®© N o

158

A Scanner object is equated with the input file in order to facilitate the reading of words from the file.
A PrintWriter object is equated with the output file in order to facilitate the writing of words to the file.
System properties are incorporated into the program in the service of creating full file names.
The concept, and computational manifestation of, the exception is found to be lurking within this program.

Subtasks

1. Establish a data file.

(a) Find yourself a lyric for some song that resonates with you, something other than “Forever Young”.
) Get into Emacs.
c¢) Establish a buffer with a reasonable name, with the intention of entering the lyric into the file.

)

)

)

Enter the lyric by hand into the file, stripping it of all punctuation as you do.
Check your file carefully to be sure that it contains no punctuation.

(f) Save the file to the data subdirectory of the CS1Files subdirectory of your home directory.

2. Enter the ReverseCopy program.

(a) Get into Intelli].

(b) Carefully, mindfully, enter the ReverseCopy program as a Java Class program within the arrayplay
package, changing the file names in the given program to file names appropriate to your chosen song lyric.
If you are using IntelliJ in a reasonable way, your will proceed in something like the following manner:

i.
ii.

iii.
iv.

vi.

vii.

viii.

ix.

Type in the body of the main method.

Use the red text and light bulbs to create the stubs for the readWordsFromFile method and the
writeWordsToFile method.

Add the line for the LIMIT constant.

Type in the body of the readWordsFromFile method, and as you do: click on the red text and follow
the pop-up instructions to import the Scanner class, and use the red text and light bulb that appears
to create the stub for the establishScanner method.

Type in the body of the writeWordsToFile method, and as you do: click on the red text and follow
the pop-up instructions to import the PrintWriter class, and use the red text and light bulb that
appears to create the stub for the getPrintWriter method.

Type in the body of the establishScanner method, and as you do: use the light bulb that appears to
create the stub for the createFullFileName method, click on the red text and follow the instructions
to import the File class, and use the light bulb that appears when clicking on red-underlined text
to add the throws clause for the FileNotFoundException exception to the method signature. The
option to choose will say something like Add exception to method signature.

Type in the body of the getPrintWriter method, and as you do: use the light bulb that appears when
clicking on red-underlined text to add the throws clause for the FileNotFoundException exception
to the method signature.

Type in the body of the createFullFileName method, and as you do: adjust IntelliJ’s guess at the
parameter name, changing it to fileName, and add the prefacing comment as well.

Use the light bulbs appropriately to add the throws clauses for the FileNotFoundException exception
to the writeWordsToFile method, the readWordsFromFile method, and the main method.

3. Run the program.
4. Check to see that the program did its job by looking for the output file in the data subdirectory of the CS1Files
subdirectory of your home directory, and by checking its contents.

Task 5: Post your work

Please post your work for this lab on you Web site. Post the source code and the demo for each of the first two
programs. For the third program, post the source code, the song lyric file, and the file containing the words of the
lyric in reverse order.

159

Task 6: Reflection

Think for a little while about this lab and your engagement with it. What did you learn that is conceptually signifi-
cant? What did you learn that is technologically useful? What is your most salient thought about the lab and your
engagement with it?

160

23 Lab 9a: Simple List Processing

D. Gelernter on MACHINE BEAUTY

Beauty is more important in computing than anywhere else in technology because software is so complicated. Beauty
is the ultimate defense against complexity. The geniuses of the computer field are the people with the keenest aes-
thetic senses, the ones who are capable of creating beauty. Beauty is decisive at every level: the most important
interfaces, the most important programming languages, the winning algorithms are the beautiful ones.

Overview

This lab, like the Array Play lab, features three programs. In fact, the three programs featured in this lab are clear
riffs on those featured in the Array Play lab. Whereas the programs in the Array Play lab were dedicated to ac-
quainting you with basic concepts and mechanisms associated with the array, the programs in this lab are dedicated
to acquainting you with basic concepts and mechanisms associated with the ArrayList.

Why do it?
As you work through this lab you will:

1. Get acquainted with basic ArrayList processing functionality.

2. Have an opportunity to compare and contrast array processing (previous lab) with ArrayList processing (this
lab).

3. Revisit many of the things that you were introduced to in the previous lab.

Task 1: Prepare to do the Java programming for this lab in IntelliJ

1. Log on to a sanctioned machine.
2. Get into Intellil.
3. Open the CS1 project, if need be.

Task 2: Study (read/create/run/reflect upon) the accompanying Primes program

The accompanying Primes program features an ArrayList of single digit primes. Like the primes program of the
previous lab, this primes program doesn’t do much of anything, in order that attention can be clearly focused on
some bare essentials. This time, the focus in on ArrayList processing.

1. Carefully read through the Primes program and the demo that follows it. (The line numbers are included for
subsequent reference purposes.)

161

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Program: Primes (just the main method)

public static void main(String[] args) {

ArraylList<Integer> primes =

new ArrayList<>();

" + primes.size());
" + primes.get (0));
+ primes.get (3));
+ primes.get(primes.size()-1));

primes.add (2);

primes.add (3);

primes.add (5);

primes.add(7);

System.out.println("size of primes list =
System.out.println("first prime =
System.out.println("last prime = "
System.out.println("last prime = "
System.out.println("\nThe initial 1list

for (Integer prime primes) {
System.out.println(prime);

}

int temp = primes.get (0);
primes.set (0,
primes.set(primes.size()-1,temp);

System.out.println("\nThe final list
for (Integer prime primes) {
System.out.println(prime);

3

}

")

primes.get(primes.size()-1));

.Il);

Demo: Primes

size of primes list = 4
first prime = 2
last prime =7
last prime =7

The initial 1list ...
2

3
5
7
The final list ...
7

3
5
2

162

2. Within a package called arraylistplay, establish a Java Class called Primes with a reasonable lead comment
(craft a simple sentence that is appropriate) and the main method that has been provided.

3. Run the program.

4. Take a few minutes to answer the following questions.

(a) How does one declare an ArrayList variable capable of storing objects of a certain type in Java.

(b) How does one create an empty ArrayList object of a certain type in Java.

(¢c) How does one reference an element of an ArrayList object in Java.

(d) How does one change an element of an ArrayList object in Java.

(e) How do you reference the size of an ArrayList object in Java?

(f) What is the index of the first element of an ArrayList object in Java?

(g) What is the index of the last element of an ArrayList object in Java?

163

~N O Uk W N~

Task 3: Write a Streets program, working by analogy with the Primes program

Write a program called Streets, bit by bit, according to the instructions which follow, working by analogy with the
Primes program. The Streets program will feature names of streets that you can walk in the French Quarter of
New Orleans.

L

10.
11.

12.

13.

Within the arraylistplay package, establish a Java Class called Streets.

Write a reasonable lead comment.

Create an empty main method.

Add a line to the main method of your Streets program to declare a variable called streets capable of storing
an ArrayList of String values, and bind it to an empty array list. (Work by analogy with line 3 of the main
method of the Primes program, which declares a variable called primes capable of storing an ArrayList of
Integer values, and binds it to an empty array list.)

Place the following names of French Quarter streets into the ArrayList object to which the streets variable
is bound, in the order provided: "Iberville" "Decatur" "Toulouse" "Bourbon" "Dauphine" "Royal" "St
Ann" "St Peter" "Conti" "Exchange" "Bienville" "Dumaine". (Work by analogy with lines 5-8 of the main
method of the Primes program.)

Run the program.

Mimicking the code that appears in lines 10-13 of the main method of the Primes program, add statements
to the main method of the Streets program to display, labelled, the length of the featured array list, the first
element of the featured array list, and the last element of the featured array list, twice.

Run the program.

Mimicking the code that appears in lines 15-18 of the main method of the Primes program, add statements to
the main method of the Streets program to display, labelled, the elements of the array list to which streets
is bound.

Run the program.

Mimicking the code that appears in lines 20-22 of the main method of the Primes program, add statements to
the main method of the Streets program to swap the first element and the last element of the array list to
which streets is bound.

Mimicking the code that appears in lines 24-27 of the main method of the Primes program, add statements to
the main method of the Streets program to display, labelled, the elements of the array list to which streets
streets is bound.

Run the program.

Task 4: Study, implement, and run a program to reverse copy a disk file

Consider the following program. Like the ReverseCopy program of the previous lab, this program reads words from
one file and writes them in reverse order to a second file. (The line numbers are included merely so that you will be
better able to refer to lines of the program should you wish to discuss it with someone.)

Program: ReverseCopy

/%

* This program features an ArraylList to do its reverse copy thing
* from one file to another.

*/

package arraylistplay;

164

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
57
58
59
60
61

import
import
import
import
import
import

public

java.io.File;
java.io.FileNotFoundException;
java.io.I0Exception;
java.io.PrintWriter;
java.util.ArraylList;
java.util.Scanner;

class ReverseCopy {

public static void main(Stringl([] args)

3

throws FileNotFoundException, IOException {

String inputFileName = "DesolationRow.text";
String outputFileName = "DesolationRowReversed.text";
ArrayList<String> words = readWordsFromFile (inputFileName);

writeWordsToFile (words, outputFileName);

private static ArraylList<String> readWordsFromFile(String inputFileName)

throws FileNotFoundException {
// Equate a scanner with the input file
Scanner scanner = establishScanner (inputFileName);
// Read the words from the file into a dynamically growing ArrayList
ArraylList<String> words = new ArrayList<>();
while (scanner.hasNext()) {
String word = scanner.next();
words .add (word) ;
}
// Return the words
return words;

private static void writeWordsToFile (ArrayList<String> words,

String outputFileName) throws IOException {
// Equate a printer with an output file

PrintWriter printer = getPrintWriter (outputFileName);
// Print the words to the file
for (int x = words.size() - 1; x >= 0; x = x - 1) {

printer.println(words.get(x));
}

printer.close();

private static Scanner establishScanner (String inputFileName)

}

throws FileNotFoundException {
String fullFileName = createFullFileName (inputFileName) ;
return new Scanner (new File(fullFileName));

private static PrintWriter getPrintWriter (String outputFileName)

throws FileNotFoundException {

String fullFileName = createFullFileName (outputFileName) ;
PrintWriter printer new PrintWriter (fullFileName);
return printer;

165

62
63
64
65
66
67
68
69
70
71
72
73
74
(0]

// Create the full file name for a simple file name, assuming that it
// will be found in the CS1Files/data subdirectory of the user’s
// home directory.
private static String createFullFileName(String fileName) {

String separator = System.getProperty("file.separator");

String home = System.getProperty("user.home");

String path = home + separator + "CS1Files" + separator +

"data" + separator;
String fullFileName = path + fileName;
return fullFileName;

}

INlustration

DesolationRow.text DesolationRowReversed.text

Now Ophelia she's 'neath the window > Row
For her I feel so afraid Desolation
On her twenty-second birthday Into
She already is an old maid peeking
To her, death is quite romantic time
She wears an iron vest her

Her profession's her religion spends
Her sin is her lifelessness She

And though her eyes are fixed upon rainbow
Noah's great rainbow great
She spends her time peeking Noah's
Into Desolation Row upon
fixed
are
eyes
her
though
And
lifelessness
her

is

sin

She

birthday
twenty-second
her

the
'neath
she's
Ophelia
Now

Noteworthy aspects of this program

1. An ArrayList is used to store the words. By comparison with the ReverseCopy program of the previous lab,
you should be able to appreciate the dynamic nature of lists.
2. The remaining bits of the program are essentially the same as in the previous version:

(a) As with the ReverseCopy program of the previous lab, the file names are hard coded, in order to focus
without distraction on certain basic aspects of file IO. But note that a different Iyric is featured in this
ReverseCopy program than was featured in the previous ReverseCopy program.

(b) Full file names are created very carefully, under the assumption that the input file will be found in the
data subdirectory of the CS1Files subdirectory of the user’s home directory, and that the output file will
be placed in that same directory.

166

(¢) Use of the principle of stepwise refinement is clearly reflected in the structure of the program.
(d) A Scanner object is equated with the input file in order to facilitate the reading of words from the file.
(e) A PrintWriter object is equated with the output file in order to facilitate the writing of words to the file.
(f)

)

(g) The concept, and computational manifestation of, the exception is found to be lurking within this program.

System properties are incorporated into the program in the service of creating full file names.

The Subtasks

1. Establish a data file.

(a) Find yourself a lyric for some song that resonates with you, a song that is different from the one that you
used in the previous lab.
) Get into Emacs.
(c) Establish a buffer with a reasonable name into which you can enter the lyric.
(d) Enter the lyric by hand into the file, stripping it of all punctuation as you do.
) Check your file carefully to be sure it contains no punctuation.
(f) Save the file to the data subdirectory of the CS1Files subdirectory of your home directory.

2. Enter the ReverseCopy program.

(a) Get into Intellil.

(b) Carefully, mindfully, enter the ReverseCopy program, changing the file names in the given program to
file names appropriate to your chosen song lyric. Please do this in a way that makes reasonable use of
IntelliJ!

3. Run the program.
4. Check to see that the program did its job by looking for the output file in the data subdirectory of the CS1Files
subdirectory of your home directory, and by checking its contents.

Task 5: Post your work

Please post your work for this lab on you Web site. Post the source code and the demo for each of the first two
programs. For the third program, post the source code, the song lyric file, and the file containing the words of the
lyric in reverse order.

Task 6: Reflection

Think for a little while about this lab and your engagement with it. What did you learn that is conceptually signifi-
cant? What did you learn that is technologically useful? What is your most salient thought about the lab and your
engagement with it?

167

168

24 Lab 9b: List Processing with Streams

Harold Abelson on PROGRAMMING

Programs must be written for people to read, and only incidentally for machines to execute.

Overview

In this lab you will write two programs which perform common processing tasks on list structures. Both programs
will produce the same output, but will be constructed in very different ways. The first program will make use of
explicit for loops and functions to perform operations which can easily be composed to produce more complex
operations. The second will make use of streams to perform the same tasks.

Why do it?
As you work through this lab you will gain experience in doing the following things:

1. Writing small functions which transform data in one list structure into another.
2. Composing simple functions to perform more complex tasks.
3. Writing programs using Java streams.

You can think of streams as making up a kind of microworld of their own — one which focuses not on painting or
music, but rather on transforming lists of data. You’ll remember from class that streams may be constructed from
lists, then may perform a sequence of transformations on the elements of the list. Sometimes we then collect the
data from the stream in a convenient form. This lab will feature three kinds of transformations: map, filter, and
reduce. We will also use two collectors, one which creates a List from the stream elements, and another which
creates a String.

During this lab you will also gain a further understanding of the idea that there are often multiple ways to achieve
the same effect in programming. We have seen how the while loop is more general than the for loop, and how in
some cases the for loop can result in easier to write and understand code.

Task 1: Prepare to do the Java programming for this lab in IntelliJ

1. Log on to a sanctioned machine.
2. Get into Intellil.
3. Open the CS1 project, if need be.

Task 2: Prepare to refine the ArrayListProcessing class

1. Carefully read through the accompanying ArrayListProcessing program.
2. Within your package called arraylists, establish a Java Class called ArrayListProcessing. Then enter the
program just as it is presented here.

169

0 O Ui Wi

R R R R R R R 0 W0 0 W W W W W W W NDN DD DN DN DN DN R e e e e e e
NN OO U R WN R OO IDDUUk WNDHEF OO DUk WNDFE OO0 Utk WwWwNn e~ O o

Program: ArrayListProcessing

/ %

* A program to perform some basic operations on a list of String names.

*/

package arraylists;

import java.util.Arraylist;
import java.util.List;

public class ArrayListProcessing {

public static void main(String[] args){

//

POINT A:

Add some strings which represent names to an Arraylist.

List<String> names = new ArraylList<>();
names .add ("Holiday, Billie");

names
names.
names
names.

//
//
//

//
//
//

//
//

//
//

//
//

//
//

//
//

//
//

POINT B:

POINT C:

POINT D:

POINT E:

POINT F:

POINT G:

POINT H:

POINT I:

.add("Claudel, Camille");
add("Picasso, Pablo");
.add("Gallen-Kallela, Akseli");
add ("Zotto, 0Osvaldo");

Create an ArraylList of just the first names of the
names Arraylist. Use a for loop to print out the
names, separated by spaces.

Use String’s join function to create and print a
String of just the first names of the names Arraylist

with each name separated by a comma.

By analogy from points B and C, print a comma-
separated list of the last names in the names Arraylist.

Print a comma-separated list of all uppercase first
names from the list of names in the names ArraylList.

Print a comma-separated list of all hyphenated last
names from the list of names in the names Arraylist.

Print the integer value of the total length of all
names in the names ArrayLlist.

Print the integer value of the total length of all
first names in the names Arraylist.

Print the integer value of the product of the length
of all first names in the names Arraylist.

170

Task 3:

Refine the ArrayListProcessing class

We will now work to refine the provided class. For some points, I have provided code which you should type in
to your program. For others, you will work by analogy to complete the task.

1. Point A Refinement

(a)
(b)

I have provided you with code which creates an ArraylList of Strings called names and added some
elements representing names to it in the format <last name>, <first_name>.
Add a couple names of your own choosing in the same format.

2. Point B Refinement

(a)

N O ULk W=

(d)

N O Uk W N

()

Visit the class file for your StringThing program from Lab 7. Copy the firstName method from that
class into your ArrayListProessing class below the main method. Recall that this function operates
on a directory-style name (e.g., “Gosling, James”) and returned only the first name (“James”, in this
example).

Re-read the POINT B comment in the program to get yourself into the mindset of what we’re trying to
accomplish.

Under the POINT B comment in the program, add code to which will make use of a firstNames function
(which we will soon write), and prints out the results as prescribed by that comment. I've provided some
code below which you should read and understand before typing in.

List<String> firstNamesList = firstNames (names);

System.out.print ("First names: ");
for (String firstName : firstNamesList)({
System.out.print (firstName + " ");

b
System.out.println();

Write a method called firstNames which transforms a list of names into a list of only first names. I've
provided this code for you below. Read it carefully and be sure you understand it — you’ll be asked to
do a similar thing shortly! Once you are sure you understand it, type it in to the ArrayListProessing
program below the main method.

private static List<String> firstNames(List<String> names){
List<String> firsts = new ArrayList<>();
for (String name : names){
firsts.add(firstName (name)) ;
}
return firsts;

}

Run your program. You should see the first names printed.

3. Point C Refinement

(a)

(b)
()

As we’ve seen before, the Java String library is powerful, with many functions available to us. Today we
will use the join function to convert a list of Strings into a single String, where each string is separated
by a delimiter. The following code joins all of the first names from our firstNamesList into a single
comma-separated String called firstNames. Type it below the POINT C comment in the program.

String firstNames = String.join(", ", firstNamesList);

System.out.println("First names: " + firstNames);

Test your program and recognize how it differs from what we wrote in Point B.

Think about how you would change the code you just wrote to give a result identical to that from point
B.

171

4. Point D Refinement

(a)

(b)

()
(d)
()

Work by analogy from point B to first create an ArrayList of only the last names for the names in
the names ArrayList. Do this by copying the lastName function from StringThing and writing a new
function called lastNames in your ArrayListProessing class which will be very similar (but not identical)
to the firstNames function we already wrote.

Work by analogy from point C to use String’s join function to create a comma-separated list of last
names.

Print out the list of last names.

Test your program and refine as necessary.

Note: In this task we’re treating each of the points D-I as independent, so we don’t mind duplicating a bit
of functionality.

5. Point E Refinement

(a)

()

(f)

Re-read the POINT E comment in the program to get yourself into the mindset of what we're trying to
accomplish.

Write a function below the main method which takes as input a list of names, and returns a new list of
names where all of the names have been transformed to be all uppercase. Actually, I've already written
this one for you. Read it and understand it well before typing it in to your program below the main
method.

public static List<String> upperCaselNames (List<String> names){
List<String> uppercases = new ArrayList<>();
for (String name : names){
uppercases.add(name.toUpperCase ()) ;

3

return uppercases;

}

Notice how this function has the same general structure as the previous two we’ve written: it creates
a new ArrayList where we will put our resulting data to return, then it loops over the original data,
performing some transformation, and storing the result in this new list we created. Finally the new list
is returned. You can think of this function as performing a mapping to uppercase for each name in the
provided list.

Use the method we just wrote to get the upper case first names from the list of names and print them
out. Read and understand the below code before typing it in below the POINT E comment in the main
method.

List<String> upperCaseFirstNamesList = upperCaseNames(firstNames(names)) ;
String upperCaseFirstNames = String.join(", ", upperCaseFirstNamesList);

System.out.println("Uppercase first names: " + upperCaseFirstNames) ;

Notice how we are chaining together multiple functions which modify our initial list of names. In
upperCaseNames (firstNames (names)) we say to first get all of the first names, then make them all
uppercase.

Test the program.

6. Point F Refinement

(a)
(b)

Re-read the POINT F comment in the program to get yourself into the mindset of what we’re trying to
accomplish.

Write a function below the main method which takes as input a list of names, and returns a new list of
names in which only the ones which are hyphenated are retained (that is, only Strings which contain a
hyphen are returned). I've already written this one for you too. Read it and understand it well before
typing it in to your program.

172

1
2
3
4
5
6
7
8
9

()

(d)
()

public static List<String> hyphenatedNames (List<String> names){

List<String> hyphenateds = new ArrayList<>();
for (String name : names){

if (name.contains("-")) {

hyphenateds.add (name);

3
}
return hyphenateds;

}

Again notice how the structure of the method is similar to previous ones, but it has one major difference:
the use of a selection statement inside the for loop. This causes the method to act like a filter — keeping
only the elements which match the condition.

By analogy from the code we wrote under POINT E, write a few statements to get and print a comma-
separated list of hyphenated last names.

Test your code.

7. Point G Refinement

(a)

N O U W N

(d)

Write a function below the main method which takes a list of names and returns the integer length of all
of the names in the list. Once more, I've written this one for you. It should look somewhat familiar from
examples we’ve done in class. Be sure you understand it before typing it in to your program.

public static int totalNameLength(List<String> names){
int totallength = O0;
for (String name : names){
totallength = totallLength + name.length();
}
return totallength;
X

Notice how this function differs from the previous parts of this lab. Instead of creating a new ArrayList
to store our result, we use an int which holds an initial value (0) to begin with, and is modified by
processing each element in the ArrayList. The int acts as an accumulator. In a sense, we can think of
this function as reducing a whole list of elements (Strings in this case) to a single piece of data (an int
in this case).

Type the following below the POINT G comment in your main method.

int totallLength = totalNameLength(names);

System.out.println("Total length: " + totalLength);

Test your program and ensure the result is correct.

8. Point H Refinement

(a)

(b)

Work by analogy from the above points to get the total length of only the first names from the names
ArrayList. Store the result in an appropriately named int variable then print it out. You shouldn’t need
to write any new methods for this point.

Test your code and ensure the answer is correct.

9. Point I Refinement

(a)

(b)
()

Work by analogy from point G to write a function which calculates the product of the lengths of each of
the names in a list of names.

Again as in point G, write some code in the appropriate spot in the main method to test your function.
Test your function. Be sure you got the answer you expected.

173

0O Ui Wi

R R R R GO Lo L L W W W W W WNNDNDN DN DN DNDNDN DN e R e e e e
B WNNHFRF OOWOOTDDUEREWNFE O OO WNDFE O OO Utk W~ O o

Task 4: Prepare to refine the StreamArrayListProcessing class

1. Carefully read through the accompanying StreamArraylListProcessing program. The structure should look

familiar, though the instructions might not.

2. Within your package called arraylists, establish a Java Class called StreamArrayListProcessing. Then

enter the program just as it is presented here.

Program: StreamArrayListProcessing

/ *

* A program to perform some basic operations on a list of Strings
* using Java streams.

*/

package arraylists;

import java.util.ArrayList;
import java.util.List;
import java.util.stream.Collectors;

public class StreamArraylListProcessing {

public static void main(String[] args){

// POINT A: Add some strings which represent names to an ArraylList.
List<String> names = new ArrayList<>();

names .add ("Holiday, Billie");

names .add("Claudel, Camille");

names.add("Picasso, Pablo");

names.add("Gallen-Kallela, Akseli");

names .add ("Zotto, Osvaldo");

// POINT B: Use map and the tolList collector to create an ArrayList
// of just the first names of the names Arraylist. Use a
// for loop to print out the names, separated by spaces.
// POINT C: Use map and the joining collector to create a String

// of just the first names of the names ArraylList with each
// name separated by a comma. Print it.

// POINT D: By analogy from point C, print a comma-separated list
// of the last names in the names Arraylist.

// POINT E: Print a comma-separated list of all uppercase first

// names from the list of names in the names Arraylist.

// POINT F: Print a comma-separated list of all hyphenated last

// names from the list of names in the names ArraylList.

// POINT G: Print the integer value of the total length of all

// names in the names Arraylist.

// POINT H: Print the integer value of the total length of all

// first names in the names Arraylist.

174

45
46
47
48
49

// POINT I: Print the integer value of the product of the length of
// all first names in the names ArraylList.
}
}
Task 5: Refine the StreamArrayListProcessing class

As before, we will now work to refine the provided class. For some points, I have provided code which you should
type in to your program. For others, you will work by analogy to complete the task. You will want to have your
ArrayListProcessing class handy to compare what we do here with what we did there.

1. Point A Refinement

(a)

Revisit, for a moment, your ArrayListProcessing class and copy the additions you made to the names
ArrayList into your new class.

2. Point B Refinement

(a)
(b)

© 00 O Uk W

()
(d)

Once again, copy the firstName function from your StringThing program into the class you're working
on now.

Instead of using a method to perform an operation on each element of our names list as we did in Task 3,
we will use streams. Consider the following:

List<String> firstNamesList = names.stream()
.map(n -> firstName(n))
.collect(Collectors.toList ());

System.out.print ("First names: ");

for (String firstName : firstNamesList){
System.out.print (firstName + " ");

}

System.out.println();

Here, the transformation from the firstNames function in the previous program is captured by the map
function.

Type the above code below the POINT B comment. Make sure you understand how the program works.
Run the program and ensure it produces the same answer as your previous program.

3. Point C Refinement

(a)

T W N

(b)

()
(d)

Modify a copy of the code from Point B to use the joining collector, which performs a similar function
as the String.join which we used in the ArrayListProcessing class. I've written this one for you, so
you should study the difference between what we wrote in Point B and in previous tasks. Type this code
below the POINT C comment.

String firstNames = names.stream()
.map(n -> firstName(n))
.collect(Collectors. joining (", "));

System.out.println("First names: + firstNames) ;

Note: In this task we’re treating each of the points B-I as independent, so we don’t mind duplicating a bit
of functionality.

Run the program and ensure it produces the same answer as your previous program.

Describe below, in your own words, what map does.

175

4. Point D Refinement

(a) Work by analogy from point C to write a statement using streams which creates a comma-separated
String of the last names from the names ArrayList. Do this by copying the lastName function from
StringThing and modifying the stream statement from Point C to get last names instead of first names.

(b) Print out the list of last names.

(¢) Run the program and ensure it produces the same answer as your previous program.

5. Point E Refinement

(a) Write a stream expression which produces a comma-separated String of uppercase first names from the
names ArrayList. Do this by writing a stream expression which uses two map functions. First get the
first name of each name in the names ArrayList, then convert them to upper case, and finally use the
joining collector to create a comma-separated String which lists each of the results. Print the results.
Once again I've written this one for you — once you understand it, type it under POINT E in your class

file.
1 String upperCaseFirstNames = names.stream()
2 .map(n -> firstName(n))
3 .map(n -> n.toUpperCase())
4 .collect(Collectors. joining (", "));
)
6 System.out.println("Uppercase first names: " + upperCaseFirstNames);

(b) Examine the differences between what we wrote here, and what we wrote for Point E in the ArrayListProcessing
class. Ruminate upon the advantages to each approach.
(¢) Run the program and ensure it produces the same answer as your previous program.

6. Point F Refinement

(a) Write a stream expression which produces a comma-separated String of the hyphenated last names in
the names ArrayList. Do this by writing a stream expression which uses a map function to get the last
name of each name in the names ArrayList, uses a filter function to keep only those last names which
contain hyphens, and finally uses a joining collector. Once again I’ve written this one for you — once you
understand it, type it under POINT F in your class file.

1 String hyphenatedLastNames = names.stream()
2 .map(n -> lastName(n))

3 .filter(n -> n.contains("-"))

4 .collect(Collectors. joining (", "));

—
=3
~

Write a print statement to output the results.

Notice that in the directions for Point F in Task 3 we discussed that the operation we were performing
was a kind of filter. Here this is made explicit — only those items which pass the filter are retained.

Run the program and ensure it produces the same answer as your previous program.

—~
o
~

—_
IR="
-

Think about when it is appropriate to use map as compared to when it is appropriate to use filter. Write
your answer here:

176

7. Point G Refinement

(a) Write a stream expression which produces the total length of all of the names in the names ArraylList.
Do this by using map to get the length of each name, then by using reduce to add of these lengths together.
One last time, I've written this one for you. Be sure you understand the code below before you type it in.
Reduce is notoriously difficult to understand!

int totallength = names.stream()
.map(n -> n.length())
.reduce (0, (nl1l, n2) -> nl + n2);

Tk W N~

System.out.println("Total length: " + totalLength);

(b) Run the program and ensure it produces the same answer as your previous program.
(¢) Describe below, in your own words, what reduce does.

8. Point H Refinement

(a) Work by analogy from the above points to write a stream expression to get the total length of only the
first names from the names ArrayList. Store the result in an appropriately named int variable then print
it out. Place this in the obvious spot in the program.

(b) Run the program and ensure it produces the same answer as your previous program.
9. Point I Refinement

(a) Work by analogy from point G to write a stream expression which calculates the product of the lengths of
each of the names in a list of names. Store the result in an appropriately named int variable then print
it out. Place this in the obvious spot in the program.

(b) Run the program and ensure it produces the same answer as your previous program.

Task 6: Post your work

Please post your work for this lab on you Web site. Post the source code and the demo for both of the programs.

Task 7: Reflection

Think for a little while about this lab and your engagement with it. What did you learn that is conceptually signifi-
cant? What did you learn that is technologically useful? What is your most salient thought about the lab and your
engagement with it?

177

178

25 Lab 10: Establishing and Using Classes

D. Knuth on THE UTILITY OF TOY PROBLEMS

The educational value of a problem given to a student depends mostly on how often the thought processes that are
invoked to solve it will be helpful in later situations. It has little to do with how useful the answer to the problem
may be. On the other hand, a good problem must also motivate the students; they should be interested in seeing
the answer. Since students differ so greatly, I cannot expect everyone to like the problems that please me.

Overview

This lab features two programs. The first program, Die, is a class which models a die — an object of chance that you
tend to roll. The second program, Roller, creates and uses Die objects — instances of the Die class.

Why do it?
As you work through this lab you will:

1. Learn something about modeling classes of objects.
2. Gain additional practice in creating and using computational objects.
3. “Mechanically” translate from a for statement to a while statement.

Conceivable demo for the eventual Roller program

run:
Roll a standard die 5 times ...

26565

Roll a twenty sided die 5 times ...

1891047

Roll a standard die 20 times

615231466141 14144224

Roll a standard die 30 times ...

421651665265 125454556532546461
Roll a nine sided die 20 times ...
944325446515845173938

Roll a nine sided die 30 times ...
846745478719427419422191995654
Ten times, roll a stanard die for a 1.

3231

4422365566361
4554421

179

0~ O Uk W

DO DD = = = e e e e e e
— O © 00O Ul W~ OO

56654361

432665251

2455231

452626521

6 1

1

4 4 1

Ten times, roll a twelve sided die for a 1.
388412991010866 29 11 111
931

3101055 11 103 1

91

3119751

7127269 112109 10 1
995107497 1151226558634888289612482121
4 2 12 1

12910311541

102671

BUILD SUCCESSFUL (total time: O seconds)

Task 1: Prepare to do the Java programming for this lab in IntelliJ

1. Log on to a sanctioned machine.
2. Get into IntelliJ.
3. Open the CS1 project, if need be.

Task 2: Create the Die class

Within a package called chance, mindfully establish a Java Class called Die that looks like the following program:

*

Model a die in terms of two properties:
- order, the number of faces
- top, the value of the top face

* *

*/
package chance;
public class Die {

// THE INSTANCE VARIABLES (STATE)

private int order;
private int top;

// THE CONSTRUCTORS
public Die() {

order = 6;
top = (int) ((Math.random() * 6) + 1);

180

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

0O Ui Wi+

I I I I I T T N N T N Y Sy S g S WG S Gy S G W
S 0T N EWNR,OW©O®W-IDU W~ O ©

public Die(int nr0fSides) {

order = nr0fSides;

top = (int) ((Math.random() * nr0fSides) + 1);
}

// THE METHODS (BEHAVIOR)

public int top () {
return top;

3

public void roll() {
top = (int) ((Math.random() * order) + 1);
}

Task 3: Create the Roller program

Within a package called chanceapps, establish a Java Class called Roller. One might call Roller a Java Main
Class — it is one which can be executed because it has a main method (note that Die does not). Mindfully write the
Roller class so that it looks like the following program:

/ *
* Program to make use of the Die class.

*/
package chanceapps;
import chance.Die;
public class Roller {

public static void main(String[] args) {
// CREATE A STANDARD DIE AND ROLL IT 5 TIMES
createAndRollStandardDieFiveTimes () ;
// CREATE A TWENTY SIDED DIE AND ROLL IT 5 TIMES
createAndRollTwentySidedDieFiveTimes () ;
// CREATE A STANDARD DIE AND ROLL IT 20 TIMES
createAndRollStandardDie (20);
// CREATE A STANDARD DIE AND ROLL IT 30 TIMES
createAndRollStandardDie (30);
// CREATE A NINE SIDED DIE AND ROLL IT 20 TIMES
createAndRollNineSidedDie (20);
// CREATE A NINE SIDED DIE AND ROLL IT 30 TIMES
createAndRollNineSidedDie (30);
// TEN TIMES, CREATE A STANDARD DIE AND ROLL IT UNTIL YOU GET A 1
// System.out.println("Ten times, roll a standard die for a 1.");
for (int i = 1; i <= 10; i++) {

createAndRollStandardDieFori1 ();

}
// TEN TIMES, CREATE A TWELVE SIDED DIE AND ROLL IT UNTIL YOU GET A 1

181

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

// System.out.println("Ten times, roll a twelve sided die for a 1.");
for (int i = 1; i <= 10; i++) {
createAndRollTwelveSidedDieFor1 ();

}

}

private static void createAndRollStandardDieFiveTimes () {
System.out.println("Roll a standard die 5 times ...");
Die die = new Die();
die.roll(); System.out.print(die.top() + " ");
die.roll(); System.out.print(die.top() + " ");
die.roll(); System.out.print(die.top() + " ");
die.roll(); System.out.print(die.top() + " ");
die.roll(); System.out.print(die.top() + " ");

System.out.println ();
¥

private static void createAndRollTwentySidedDieFiveTimes () {
throw new UnsupportedOperationException("Not supported yet.");
}

private static void createAndRollStandardDie (int nrO0fTimes) {
throw new UnsupportedOperationException("Not supported yet.");
X

private static void createAndRollNineSidedDie(int nrOfTimes) {
throw new UnsupportedOperationException("Not supported yet.");
}

private static void createAndRollStandardDieFor1l () {
throw new UnsupportedOperationException("Not supported yet.");
3

private static void createAndRollTwelveSidedDieForl () {
throw new UnsupportedOperationException("Not supported yet.");
}

3

Task 4: Run / study the Roller program

Run the Roller program. Take a look at the output, including the output associated with the exception that was
thrown. Can you anticipate the tasks that are awaiting you?

Task 5: Refine the createAndRollTwentySidedDieFiveTimes method

1. Replace the throw statement in the createAndRollTwentySidedDieFiveTimes method so that the method
does what its name suggests. Work by direct analogy with the createAndRollStandardDieFiveTimes method.
Just be sure to create a twenty sided die with the “nonstandard” constructor rather than a standard die with
the “standard” constructor.

2. Run the Roller program.

182

Task 6: Reflection / rewriting

1. Consider the createAndRollStandardDieFiveTimes method. Does the way it is written invite you to think
of an alternative way of writing it? In the space provided below (not in IntelliJ), rewrite the method replacing
the five identical lines with a for statement that accomplishes the exact same task.

2. Consider the createAndRollTwentySidedDieFiveTimes method. Does the way it is written invite you to
think of an alternative way of writing it? In the space provided below (not in IntelliJ), rewrite the method
replacing the five identical lines with a for statement that accomplishes the exact same task.

Task 7: Refine the createAndRollStandardDie method

1. Replace the throw statement in the createAndRollStandardDie method so that the method creates and rolls
a standard die the number of times specified by the value of the parameter. In doing so, simply enter the
following code:

Code for the createAndRollStandardDie method

1 System.out.println("Roll a standard die " + nr0fTimes + " times ...");
2 Die lucky = new Die();

3 for (int i = 1; i <= nrO0fTimes; i = i + 1) {

4 lucky.roll ();

) System.out.print (lucky.top() + " ");

6 1}

7 System.out.println();

2. Run the Roller program.

183

Task 8: Translate the for statement to a while statement

1. Study the code in the createAndRollStandardDie method. Note the existence of a for statement. Change the
for statement to a while statement in such a way that the behavior of the method is exactly the same. Rather
than simply discarding the for statement and writing a while statement from scratch, perform a “mechanical
translation” based on the following mapping of a for abstraction to a while abstraction:

Mechanical procedure for translating for to while

The for statement ...

for (INITIALIZATION; TEST; CHANGE) {
STATEMENT-SEQUENCE
}

can be written in terms of the while statement ...

INITIALIZATION

while (TEST) {
STATEMENT-SEQUENCE
CHANGE

2. In order to assure yourself that you actually performed the mechanical translation correctly, run the Roller
program.

Task 9: Refine the createAndRollNineSidedDie method

1. Replace the throw statement in the createAndRol1NineSidedDie method so that the method does what its
name suggests. Work by direct analogy with the createAndRollStandardDie method, as modified in the
previous task.

2. Run the Roller program.

Task 10: Refine the createAndRollStandardDieForl method

1. Toggle the comment in the main method that reports the impending roll of a standard die for a 1 ten times.
2. Replace the throw statement in the createAndRollStandardDieFor1l method so that the method does what
its name suggests. In doing so, base your Java code on the following pseudocode:

Pseudocode to roll a standard die for a 1

create the die
roll the die
print the top face of the die followed by a space -- using print rather than println
while (the top face is not a 1) do the following

roll the die

print the top face of the die followed by a space -- using print rather than println
end of the while
issue a println command (just to terminate printing on the line)

184

3. Run the Roller program.

Task 11: Refine the createAndRollTwelveSidedDieForl method

1. Toggle the comment in the main method that reports the impending roll of a twelve sided die for a 1 ten times.

2. Replace the throw statement in the createAndRollTwelveSidedDieForl method so that the method does
what its name suggests. Work by analogy with the createAndRollStandardDieFor1 method.

3. Run the Roller program.

Task 12: Post your work

Please post your work for this lab on you Web site. Post the source code for Die and Roller. Post the final run of
the Roller program as a demo.

Task 13: Reflection

Think for a little while about this lab and your engagement with it. What did you learn that is conceptually signifi-
cant? What did you learn that is technologically useful? What is your most salient thought about the lab and your
engagement with it?

185

186

26 Lab 11: Modeling Objects with Classes

D. Gelernter on OBJECT-ORIENTED PROGRAMMING

Object-oriented programming as it emerged in Simula 67 allows software structure to be based on real-world struc-
tures, and gives programmers a powerful way to simplify the design and construction of complex programs.

Overview

In this lab you are guided through the process of writing a class to model a person. The Person class will have 5
instance variables and one constructor. Initially, it will have just one method, the toString method. You will be
given instruction on how to write a program, PersonDemo1, to test this class in its initial form.

You will then be introduced to the idea of defining and implementing a Java interface. You will be guided through
the process of enhancing the initial Person class by implementing the interface for the class. Along with this mod-
ification to the Person class, you will be instructed on how to modify the PersonDemol test program in order to
assure that the additional functionality is working.

Finally, you will be asked to write an alternate version of the test program, PersonDemo2, one which features an
array of Person objects.

Why do it?
As you work through this lab you will:

Craft a class more or less from scratch (model an object).
Establish a Java interface.

Implement a Java interface.

Write test programs.

Engage in the process of incremental program development.

S Tt W=

Practice using arrays of objects.

Task 1: Prepare to do the Java programming for this lab in IntelliJ

. Log on to a sanctioned machine.

. Get into IntelliJ.

. Open the CS1 project, if need be.

. Note that the tasks in this lab start out being very short. Please don’t be unnerved by this!

N

187

Task 2: Establish a Person Java Class file

Within a package called people, establish a new Java Class file called Person in which to model a person (i.e., in
which to develop a class which can be used to represent Person objects).

Task 3: Write the lead comment

Write a lead comment to reflect the fact that this program will model a person in terms of five properties, first name
and last name (String values), month, day, and year of birth (int values).

Task 4: Recall the basic approach to modeling a class

When writing a class you must: (1) establish instance variables, (2) define any nontrivial constructors, and (3) define
some number of methods. Just be mindful of this as you proceed.

Task 5: Establish the instance variables

Within the class, establish the five instance variables by means of five distinct variable declarations, using the qual-
ifier private for each. Call the instance variables firstName, lastName, month, day, and year. Here is one of the
five lines:

private String firstName;

Task 6: Define a constructor

Define a constructor with four parameters. The first will be a String called name, and will represent a name as a
first name followed by a space followed by a last name. For example, name might be bound to "William Smith", or
name might be bound to "Maggie Jones". The second will be an int called month, the third will be an int called
day, and the fourth will be an int called year. Your job within this constructor will be to bind the five instance
variables to appropriate values. The most interesting aspect of writing this constructor is that you will have to
extract the first name from the name parameter and also the last name from the name parameter in order to bind the
values of the firstName and lastName instance variables. (You should have plenty of experience doing this sort of
thing from your engagement in the String Thing lab.) Also of interest is the fact that you will have to disambiguate
like named instance variables and parameters using: this.

Task 7: Define a parameterless toString method

This public method will simply return a String value of the form “FIRST LAST, born MONTH/DAY /YEAR”,
where the SLANTEDCAPS words are intended to be replaced by the values of the appropriate instance variables
for the object.

Task 8: Establish a demo program for the Person class

Create a PersonDemol Java Main Class within your people package which is a completion of the following partial
program in that it will create and textually display six Person objects, one for Bob Dylan, one for Noomi Rapace,
one for Pharrell Williams, one for Frank Sinatra, one for Diana Krall, and one for you.

188

0 O Ui Wi

W NN N NN DN — e e e e
SO X TN R W~ OWO©W-TITDU R WN RO ©

PersonDemol Program

/ %
* PersonDemol is
* objects.

*/

package people;

a simple program to create and textually display Person

public class PersonDemol {

public static

// CREATE
Person bd
Person nr

// DISPLAY THE SIX PERSON OBJECTS TO THE STANDARD OUTPUT

void main(Stringl[] args) A

THE SIX PERSON OBJECTS
= new Person("Bob Dylan" ,5,24,1941);
= new Person("Noomi Rapace" ,12,28,1974);

System.out.println(bd);
System.out.println(nr);

You will know that your Person class is correct if your output is consistent with the following sketch:

Sketch execution of PersonDemol

Bob Dylan, born 5/24/1941
Noomi Rapace, born 12/28/1974

189

00 O Uik WK

— e e e
QU W N~ OO

Task 9: Create the PersonSpecification Java interface

An interface with respect to the Java programming language is essentially a store of method headers. A class can
implement an interface by defining all of the methods specified in the interface. In this task, you are to establish a
Java interface that you will be asked to implement in the next task.

1. Create a Java interface ...

(a) Right click on the people package and create a new Java Class.
(b) On the New Java Class form that appears ...
i. Type PersonSpecification into the Name field.
ii. Select Interface.
iii. Press the(Enter)key on the keyboard.

2. Modify the template so that it matches the following:

PersonSpecification interface

/ *
* Person functionality

*/
package people;

public interface PersonSpecification {
public String firstName ();
public String lastName () ;
public int month();
public int day () ;
public int year ();
public String initials();
public boolean isBoomer ();

3

Task 10: Implement the PersonSpecification interface in the Person class

Perform the implementation of the PersonSpecification interface in the Person class according to the following
three step process.

1. Change the opening line of the Person class so that you are obligated to define all of the methods represented
in the PersonSpecification by inserting implements PersonSpecification in the class header so that it
looks like:

public class Person implements PersonSpecification \{

2. Notice that the opening line of the Person class is now underlined in red. Click on it, and ask the light bulb
to Implement methods. When you select that option, a window will appear asking you which methods from
the interface you would like to add stubs for. Simply click OK and IntelliJ will generate a stub for each of the
methods.

3. Refine each stub in a manner consistent with the following semantics:

e Person.firstName() — String

returns the value to which the firstName instance variable is bound
e Person.lastName() — String

returns the value to which the lastName instance variable is bound
e Person.month() — int

returns the value to which the month instance variable is bound

190

O O UL W N

WR NN NN NN DN DN — o e e
SO X TN R WN OO U R WNR O ©

31

® Person.day() — int
returns the value to which the day instance variable is bound
e Person.year() — int
returns the value to which the year instance variable is bound
e Person.initials() — String
returns the two character string consisting of the first letter of the first name followed by the first letter
of the last name, both in upper case
e Person.isBoomer() — boolean
returns the value true is the person is a baby boomer, false if not

Task 11: Modify the PersonDemol program

Modify the PersonDemol Java Main Class file within your people package so that it is the reasonable completion of
the following partial program

Revised PersonDemol program

/*

* PersonDemol is a simple program to create and textually display Person
* objects, together with initials and an indication of whether or not the
* person is a baby boomer.

*/
package people;
public class PersonDemol {
public static void main(String[] args) {
// CREATE THE SIX PERSON O0BJECTS

Person bd = new Person("Bob Dylan",5,24,1941);
Person nr = new Person("Noomi Rapace" ,12,28,1974);

// DISPLAY THE SIX PERSON OBJECTS TO THE STANDARD OUTPUT STREAM
System.out.println(bd + " " + bd.initials() + " " + bd.isBoomer ());

System.out.println(nr + " " + nr.initials() + " " + nr.isBoomer ());

}

You will know that your Person class is correct if your output is consistent with the following sketch:

191

Sketch execution of the revised PersonDemol program

Bob Dylan, born 5/24/1941 BD false
Noomi Rapace, born 12/28/1974 NR false

Task 12: Create the PersonDemo2 Java Main Class File

Create a PersonDemo2 Java Main Class file within your people package. This program will behave quite like the
PersonDemol program. It will differ in that this program’s Main method will feature an array of Person objects.
The form of this method will be:

// CREATE AN ARRAY OF PERSON OBJECTS OF SIZE 6 AND FILL IT WITH THE DATA

// USE A FOR LOOP TO DISPLAY THE SIX PERSON OBJECTS IN THEIR TEXTUAL FORM

Task 13: Post your work

Please post your work for this lab on you Web site. Post the source code for PersonSpecification, Person,
PersonDemol and PersonDemo2. Post the final run of the PersonDemol program and the run of the PersonDemo2
program as demos.

Task 14: Reflection

Think for a little while about this lab and your engagement with it. What did you learn that is conceptually signifi-
cant? What did you learn that is technologically useful? What is your most salient thought about the lab and your
engagement with it?

192

27 Lab 12: Grapheme to Color Synesthesia

Seymour Papert on THE SIGNIFICANCE OF LEARNING TO PROGRAM

My basic idea is that programming is the most powerful medium of developing the sophisticated and rigorous think-
ing needed for mathematics, for grammar, for physics, for statistics, for all the “hard” subjects. In short, I believe
more than ever that programming should be a key part of the intellectual development of people growing up.

GR HEME TO OLOR TNESTHESH

Overview

This lab features a program that simulates grapheme to color synesthesia. It takes the form of an interpreter. Two
parallel arrays are featured in the grapheme to color mapping. Strings and arrays cooperatively perform the essential
elements of the computation. The simple painter class easily supports the graphics processing.

Why do it?

As you work through this lab you will:

Experience programming with parallel arrays.

Get acquainted with sequential search.

Focus yet again on the process of interpretation.

See some interesting interactions between strings and arrays.

U W

Appreciate how the painter can render text synesthetically.

Task 1: Prepare to do the Java programming for this lab in IntelliJ

1. Log on to a sanctioned machine.

193

0 O Ui WK

R W W W W W WWWWWNDNNDNDNDNDDNDDNDNDN == =
H O OO U WNRF OO WNRFEOOWWTO Uk W~ O

2. Get into Intellid.
3. Open the CS1 project, if need be.

Task 2: Create the GraphemeToColorSynesthesia program

Within a package called synesthesia, establish the following Java Class program, which simulates grapheme to

color synesthesia. Please do so in a mindful manner!

GraphemeToColorSynesthesia program

/ *

* ¥ X X X %

/

package synesthesia;

import
import
import
import
import

public

java.awt.Color;
java.awt.Point;
javax.swing.JOptionPane;
javax.swing.SwingUtilities;
painter.SPainter;

class GraphemeToColorSynesthesia

private static final int fontsize =
private static final String thelett
private static Stringl[] letters;
private static Color[] colors;

private void paintingCode () <

// INITIALIZATION

{

30;

ers

’

= "AEIOU";

SPainter miro = new SPainter (1200,220);

miro.setScreenLocation (30, 30);
miro.setFontSize (fontsize);
initializeColorMap (theLetters);

// INTERPRETATION
while (true) {

String input = JOptionPane.showInputDialog(null,
or a few words

"Please enter a word,

if (input == null) { inpu

input = input.toUpperCase ()

if (input.equals ("EXIT"))
break;

t =
H

{

"EXIT";

} else if (input.equals("REMAP")) {
initializeColorMap (thelLetters);

194

}

Program to simulate the phenomenon known as grapheme to color synesthesia.
This program is written as an interpreter that recognizes and responds to:
- exit | terminate the program
- remap | redefine the mapping from letters to colors

- WORD OR PHRASE | simply show the word or phrase in synesthetic color

")

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
(0]
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

showlLetters (miro,thelLetters);
} else {
showlLetters (miro,input.toUpperCase ());
}
+
miro.end ();

}

private static void showLetters(SPainter miro, String input) {

// READY

eraseWhiteBoard (miro);

// SET

miro.moveTo (new Point.Double(100,100));

// GO

for (int i = 0; i < input.length(); i =i + 1) {
String letter = input.substring(i, i+1);
Color color = getLetterColor (letter);
miro.setColor (color);
miro.draw(letter);
miro.mrt (fontsize);

3

private static void initializeColorMap(String specialletters) {
letters = new String[specialletters.length()];

colors = new Color[speciallLetters.length()];

for (int i = 0; i < specialletters.length(); i = i + 1) {
letters[i] = specialletters.substring(i,i+1);
colors[i] = randomColor ();

}

private static Color getLetterColor (String letter) {
for (int i = 0; i < letters.length; i =i + 1) {
if (letter.equalsIgnoreCase(letters([i])) {
return colors[i];
}
}
return Color.BLACK;

private static Color randomColor () {
int rv = (int)(Math.random () *256);
int gv = (int) (Math.random()*256);
int bv (int) (Math.random () *256) ;
return new Color(rv,gv,bv);

}

private static void eraseWhiteBoard (SPainter miro) {
miro.setColor (Color.WHITE);
miro.wash();
miro.paintFrame (Color.black, 5);

195

96 // INFRASTRUCTURE FOR SOME SIMPLE PAINTING

97 public GraphemeToColorSynesthesia() {

98 paintingCode ();

99 }

100

101 public static void main(String[] args) {
102 SwingUtilities.invokeLater (new Runnable () {
103 public void run() {

104 new GraphemeToColorSynesthesia();
105 }

106 s

107 }

108

109 }

Task 3: Study the program

The program makes use of parallel arrays to store the grapheme to color synesthetic knowledge. Although this is a
very basic form of knowledge representation, parallel arrays can be practically useful on occasion, and theoretically
interesting as a basis for comparison with more sophisticated knowledge representations.

1. Write down, in English, at the level of the array and the array element, a description of the initializeColorMap
method.

2. Write down, in English, at the level of the array and the array element, a description of the getLetterColor
method.

196

3. Write down, in English, at the level of the array and the array element, a description of the showLetters
method.

Task 4: Run the program

Enter different words and short phrases. Occasionally issue the remap command. Eventually enter the exit com-
mand.

Task 5: Extend the program

Change the program so that it will map all of the letters of the alphabet to colors, not just the vowels. (Once you
determine what to do, it should take you about 4 seconds to do this.)

Task 6: Run the program

Enter different words and short phrases. Occasionally issue the remap command. Eventually enter the exit command.

Task 7: Post your work

Please post your work for this lab on you Web site. Post the source code for the GraphemeToColorSynesthesia
program, and at least one snapshot of text with all of its letters colored.

Task 8: Reflection

Think for a little while about this lab and your engagement with it. What did you learn that is conceptually signifi-
cant? What did you learn that is technologically useful? What is your most salient thought about the lab and your
engagement with it?

197

198

28 Lab 13: Chromesthesia

James Lovelock on COMPUTER PROGRAMMING AND LEARNING TO PRO-
GRAM

Composing computer programs to solve scientific problems is like writing poetry. You must choose every word with
care and link it with the other words in perfect syntax. There is no place for verbosity or carelessness. To become
fluent in a computer language demands almost the antithesis of modern loose thinking. It requires many interactive
sessions, the hands-on use of the device. You do not learn a foreign language from a book, rather you have to live
in the country for years to let the language become an automatic part of you, and the same is true for computer
languages.

Overview

In this lab you get to make good use of both the NPW and and the MMW! You will simulate the experience of a
chromesthete, someone who automatically, inflexibly, maps pitch classes to colors.

The intent of the first task is largely to afford you an opportunity to study a program, by which I mean study certain
computational constructs used in context. The program can play notes chromestetically, but only for a subset of the
pitch classes that make up the most standard of scales, and only for a single note duration. The second task asks
that you extend the program so that all pitch classes of the scale can be rendered. The third task invites you extend
the program so that the notes can be played with a variety of durations. Taken as a whole, this lab illustrates the
process of incremental programming.

Why do it?
As you work through this lab you will:

. Gain experience with the technique of incremental programming.
. Play with arrays of objects.
. Get acquainted with a music knowledge representation.

N R R

. Contribute the development of a multi-sensory program - a chromesthetic program, in particular.

Task 1: Create version 0 of the Chromesthesia program

1. FYI, the code featured in this lab is substantial enough that I have placed it right at the end of this lab. Look
for it, both the Chromesthesia Java Main Class and the Pitch Java Class, at the end of this lab when you are
asked to refer to the accompanying code.

2. Within a package called chromesthesia0 of your CS1 project, establish the accompanying Chromesthesia
program as a Java Main Class.

3. Within the chromesthesia0 package, establish the accompanying Pitch program as a Java Class.

4. Run the Chromesthesia program, and enter one of the following lines, in turn, each time the text input box
appears:

199

(a) C, D, E,CDEcde
(b)yC, CcD,DAE, Ee
(¢ CDEFG
(d)
)

(e

CCDDEEFFGFEDCCCC

Task 2: Create version 1 of the Chromesthesia program

1. Within a package called chromesthesial of your CS1 project, establish a program called Chromesthesia as a
Java Main Class. Replace all of the text within this Chromesthesia program of the chromesthesial package
with all of the text within the Chromesthesia program of the chromestisia0 package.

2. Within the chromesthesial package of your CS1 project, establish a program called Pitch as a Java Class.
Replace all of the text within the Pitch program of the chromesthesial package with all of the text within
the Pitch program of the chromestisiaO package.

3. Edit in the few obvious places. Run the Chromesthesia program of the chromesthesial package, and check
it out to make sure that it works just like the Chromesthesia program of the chromesthesia0O package. If it
does, good. If not, fix things so that it does. Once everything is in order, you are in a position to carry on
with the development of the program within the chromesthesial package.

4. Extend the Pitch class so that it processes the three notes F, and F and f£. Choose a nice color for this pitch
class. Also, extend the establishPitches method of the Chromesthesia class. Test the program.

5. Extend the Pitch class so that it processes the three notes G, and G and g. Choose a nice color for this pitch
class. Also, extend the establishPitches method of the Chromesthesia class. Test the program.

6. Extend the Pitch class so that it processes the three notes A, and A and a. Choose a nice color for this pitch
class. Also, extend the establishPitches method of the Chromesthesia class. Test the program.

7. Extend the Pitch class so that it processes the three notes B, and B and b. Choose a nice color for this pitch
class. Also, extend the establishPitches method of the Chromesthesia class. Test the program.

8. Create a file in a convenient location (perhaps you will want to make just such a location for it) and enter the
following lines of text — just so that you will be able to copy and paste them at will ...

() CDEFGABCcBAGFEDC
(b)) CDECCDECEFGEFGGAGFECGAGFECCG,CCG,C
(0CCGGAAGFFEEDDCGGFFEEDGGFFEEDCCGGAAGFFEEDDC

9. Run the Chromesthesia program, entering each of the three lines of ABC notation text that you stored in
your file.

Task 3: Create version 2 of the Chromesthesia program

1. Within a package called chromesthesia2 of your CS1 project, establish as a Java Main Class called Chromesthesia.
Replace all of the text within this Chromesthesia program of this chromesthesia2 package with all of the
text within the Chromesthesia program of the chromestisial package.

2. Within the chromesthesia2 package of your CS1 project, establish as a Java Class called Pitch. Replace all
of the text within the Pitch program of the chromesthesia2 package with all of the text within the Pitch
program of the chromestisial package.

3. Edit in the few obvious places. Run the Chromesthesia program of the chromesthesia?2 package, and check
it out to make sure that it works just like the Chromesthesia program of the chromesthesial package. If it
does, good. If not, fix things so that it does. Once everything is in order, you are in a position to carry on
with the development of the program within the chromesthesia2 package.

200

4. Change the program so that the pitch class to color mapping is as follows:

A — new Color(0,0,255)

B — new Color(0,255,0)

C — new Color(127,0,127)

D — new Color(255,255,0)

E — new Color(255,0,0)

F — new Color(255,127,0)

G — new Color(0,255,255)

5. Run the program, and give it a thorough testing.

6. Arrange for the play method of the Pitch class to function with any of the following three instances of the
parameter: "1" or "2" or "1/2". Do this by refining the following suggestive code:

1 public void play(String d) {

2 painter.setColor (color);

3 painter.paint (box);

4 painter.setColor (randomColor ());

5 painter.draw(box);

6 if (the duration string equals "1") {

7 simply play the note

8 } else if (the duration string equals "2") {

9 double the duration of the note; play it; halve the duration
10 } else if (the duration string equals "1/2") {

11 halve the duration of the note; play it; double the duration
12 }

13 }

7. In the Chromesthesia program, change the playMelody method to the following code:

1 private static void playMelody(String input, Pitch[] pitches)
2 throws Exception {

3 Scanner scanner = new Scanner (input);

4 while (scanner.hasNext()) {

5 String token = scanner.next();

6 String pitchName;

7 String duration = "";

8 if (token.indexOf(",") < 0) {

9 pitchName = token.substring(0,1);

10 duration = token.substring(1l);

11 } else {

12 pitchName = token.substring(0,2);

13 duration = token.substring(2);

14 }

15 if (duration.length() == 0) { duration = "1"; }
16 Pitch pitch = find(pitchName ,pitches);

17 pitch.play(duration);

18 }

19 %

8. Stash the following lines of ABC code in your ABC code stash, and make use of the to give your program a
relatively thorough testing.

(a) C2 C1 C C1/2 C1/2 E2 E1 E E1/2 E1/2 G2 G1 G G1/2 G1/2
(b) D,2 D,1 D, D,1/2 D,1/2 F,2 F,1 F, F,1/2 F,1/2 A,2 A,1 A, A,1/2 A,1/2
(c) b2 b1 b b1/2 b1/2 b1/2 b1/2 b bl b2

9. Extend the duration functionality so that it properly works for: "3" and "1/3" AND "2/3".

201

0O Ui Wi+

— e e e
= w N = OO

10.

11.

12.
13.

Stash the following lines of ABC code in your ABC code stash, and run your program on each one.

(a) c,1/3 C,1/3 C,1/3 C, C,3 C1/3 C1/3 C1/3 C C3 c1/3 c1/3 c1/3 ¢ c3

(b) c,2/3 ¢c,1/3 D,2/3 D,1/3 C,2/3 C,1/3 D,2/3 D,1/3 C,2/3 C,1/3 D,1 D,1 D,1 C,3
Add one more command to the set of commands that the interpreter can process. This will be the AGAIN
command. When you issue it, the most recently entered melodic sequence will be played again. This one is for
you to design and implement!
Run your program, to make sure it is working properly with AGAIN.
Stash a couple more ABC encoded sequences in your ABC code stash, doing your best to make them interest-
ing, and also to make good use of the note rendering functionality. Play each of them a couple of times and
observe.

Task 4: Post your work

Please post your work for this lab on you Web site. Post the source code for the main Chromesthesia program and
the Pitch class, post an image of the input box, and post an image of the canvas when a note is being played.

Task 5: Reflection

Think for a little while about this lab and your engagement with it. What did you learn that is conceptually signifi-
cant? What did you learn that is technologically useful? What is your most salient thought about the lab and your
engagement with it?

The Code

This program is comprised of two files, a Java Main Class file called Chromesthesia and a Java Class file called
Pitch. Both are placed in a packaged called chromesthesia0, in anticipation of subsequent versions of the program
being placed in other packages.

The Java Main Class Chromesthesia program

¥ O X X X X X X X X X ¥ * *

This program interprets melodic lines given in ABC notation as a
chromesthete might.

A Pitch class will be defined, and will take center stage in the
processing.

Interpreting a melody in ABC notation will amount to flashing
colored rectangles for prescribed durations, while sounding

the pitch! The color of the rectangle will correspond to pitch
class. The duration will correspond to the duration of the note.

For this first version of the program, the duration will be held
constant at 1 beat.

202

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
95
56
57
58
59
60
61
62
63
64
65
66
67
68

C,

¥ OX X X X X X X X ¥ ¥

package chromesthesiaO;

import
import
import
import

public

/7

public static void main(String[] args) {
SwingUtilities.invokeLater (new ThreadForGUI());

3

private static class ThreadForGUI implements Runnable {
@0verride
public void run() {
new Chromesthesia();

3

public Chromesthesia() {
interpreter ();

¥

// FEATURED VARIABLES

private static SPainter miro;
private static Pitch[] pitches;

// THE INTERPRETER

public static void interpreter () {

the chromesthetic
Simplicity

Three sorts of images will appear on the screen,
and an error message box.
of design is rendered by permitting only one box to be on the screen
at a time.

output box, a text input box,

ABC represents notes in a manner consistent with these examples:
CDEc¢cde

Google ABC music representation if you would like to know more about it.

java.util.Scanner;
javax.swing.JOptionPane;
javax.swing.SwingUtilities;
painter.SPainter;

class Chromesthesia {

INFRASTRUCTURE FOR THE PROGRAM LAUNCHING A "GRAPHICS"

initialization(); // miro and pitches
while (true) {
String input
if (input.equalsIgnoreCase ("EXIT")) {

getInput () ;

} else {

69 try {

70 playMelody (input ,pitches);

71 } catch (Exception ex) {

72 showErrorMessage (ex.toString ());

73 }

74 }

75 }

76

7 cleanup(); // miro has to go

78

79 }

80

81 // METHODS PERTAINING TO THE CHROMESTHETIC PITCHES

82

83 private static Pitch[] establishPitches (SPainter painter) {
84 Pitch[] pitches = new Pitch[9];

85 Pitch pitchMiddleC = new Pitch("C",painter);

86 pitches [0] = pitchMiddleC;

87 Pitch pitchLowC = new Pitch("C,",painter);

88 pitches[1] = pitchLowC;

89 Pitch pitchHighC = new Pitch("c",painter);

90 pitches [2] = pitchHighC;

91 Pitch pitchMiddleD = new Pitch("D",painter);

92 pitches [3] = pitchMiddleD;

93 Pitch pitchLowD = new Pitch("D,",painter);

94 pitches [4] = pitchLowD;

95 Pitch pitchHighD = new Pitch("d",painter);

96 pitches [5] = pitchHighD;

97 Pitch pitchMiddleE = new Pitch("E",painter);

98 pitches [6] = pitchMiddleE;

99 Pitch pitchLowE = new Pitch("E,",painter);

100 pitches [7] = pitchLowE;

101 Pitch pitchHighE = new Pitch("e",painter);

102 pitches [8] = pitchHighE;

103 return pitches;

104 }

105

106 private static Pitch find(String token, Pitch[] pitches) throws Exception {
107 for (int i = 0; i < pitches.length; i =i + 1) {
108 Pitch pitch = pitches[i];

109 if (pitch.abcName().equals(token)) {

110 return pitch;

111 }

112 }

113 throw new Exception ("### PITCH " + token + " NOT FOUND");
114 }

115

116 private static void display(Pitch[] pitches) {

117 for (int i = 0; i < pitches.length; i =i + 1) {
118 System.out.println(pitches[i].toString());

119 }

120 }

121

122 private static void playMelody(String input, Pitch[] pitches)

204

123 throws Exception {

124 Scanner scanner = new Scanner (input);

125 while (scanner.hasNext()) {

126 String token = scanner.next();

127 Pitch pitch = find(token,pitches);

128 pitch.play("1");

129 }

130 }

131

132 // INITIALIZATION, CLEANUP, GETTING INPUT, ERROR MESSAGING
133

134 static private void showErrorMessage(String message) {

135 miro.setVisible(false);

136 JOptionPane.showMessageDialog(null, message);

137 }

138

139 private static void initialization() {

140 // ESTABLISH THE PAINTER AND GIVE IT A SUBSTANTIAL BRUSH WIDTH
141 miro = new SPainter ("Chromesthesia" ,500,500);

142 miro.setVisible(false);

143 miro.setBrushWidth (7);

144 // ESTABLISH THE CHROMESTITIC PITCH CLASS OBJECTS

145 pitches = establishPitches(miro);

146 display(pitches);

147 }

148

149 private static String getInput() {

150 miro.setVisible(false);

151 String label = "Please enter a melody in ABC notation, or EXIT
152 String input = JOptionPane.showInputDialog(null,label);
153 miro.setVisible (true);

154 if (input == null) { input = ""; }

155 return input;

156 }

157

158 static private void cleanup() {

159 System.exit (0);

160 }

161

162}

The Java Class Pitch program

1 /=

2 * The Pitch class models the pitch of a note in a manner that will facilitate
3 * the chromesthetic processing of the pitch. A Pitch object will have five

4 *x properties:

5 * - String name | ABC notation pitch name

6 * - SPainter painter | the painting agent

7 * - Note note | a note that will be set to the pitch corresponding to the

8 * ABC notation pitch name

9 * - SRectangle box | an SRectangle object that will chromesthetically

10 * represent the pitch

205

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

* - Color color | the color associated with the pitch for the presumed
* chromesthete
*/

package chromesthesiaO;

import
import
import
import

public

//

public Pitch(String abcName,

3

java.awt.Color;
note.SNote;
painter .SPainter;
shapes.SRectangle;

class Pitch {

INSTANCE VARIABLES
private String abcName;
private SPainter painter;
private SRectangle box;
private SNote note;
private Color color;

this.abcName = abcName;
this.painter = painter;

this.box = new SRectangle(painter.painterHeight-50,

painter.painterWidth -50);

SPainter painter) {

this.note = createNoteForThisPitch (abcName);

this.color = getPitchClassColor (abcName.substring(0,1).toUpperCase());

public String toString() {

3

return "[" + abcName + " | " + note.degree() + "

public String abcName () {
return abcName;

}

private SNote createNoteForThisPitch(String abcPitchClassName) {

SNote note = new SNote();
if (abcPitchClassName.equals("C")) {

}

3

// nothing to do

else if (abcPitchClassName.

note.lp(7);

else if (abcPitchClassName.

note.rp(7);

else if (abcPitchClassName.

note.rp(1);

else if (abcPitchClassName.

note.lp(6);

else if (abcPitchClassName.

note.rp(8);

else if (abcPitchClassName.

note.rp(2);

else if (abcPitchClassName.

equals("C,")) {
equals ("c")) {
equals("D")) {
equals("D,")) {
equals ("d")) {
equals ("E")) {

equals ("E,")) {

206

+ color +

65 note.lp(5);

66 } else if (abcPitchClassName.equals("e")) {
67 note.rp(9);

68 }

69 return note;

70 }

71

72 private Color getPitchClassColor (String letter) {
73 if (letter.equals("C")) {

74 return Color.BLUE;

75 } else if (letter.equals("D")) {
76 return Color.GREEN;

77 } else if (letter.equals("E")) {
78 return new Color (127,0,127);
79 } else {

80 return Color.BLACK;

81 }

82 }

83

84 public void play(String d) {

85 painter.setColor (color);

86 painter.paint (box);

87 painter.setColor (randomColor ());
88 painter.draw(box);

89 if (d.equals("1")) {

90 note.play();

91 }

92 }

93

94 private static Color randomColor () {
95 int rv = (int) (Math.random()*256) ;
96 int gv = (int) (Math.random()*256);
97 int bv = (int) (Math.random () *256);
98 return new Color(rv,gv,bv);

99 }

100

101}

207

208

29 Lab 14: Fun with Fractals

A. Hertzfeld on PROGRAMMING

It’s [programming] the only job I can think of where I get to be both an engineer and an artist. There’s an incredible,
rigorous, technical element to it, which I like because you have to do very precise thinking. On the other hand, it
has a wildly creative side where the boundaries of imagination are the only real limitation.

H. Morowitz on COMPUTER SCIENCE AND BIOLOGY

Computer science is to biology what calculus is to physics. It’s the natural mathematical technique that best maps
the character of the subject.

Overview

A brief introduction to L-Systems will be presented. Then, in the spirit of implementing something of algorithmic
consequence with an interdisciplinary flavor (linguistics and biology), a class which represents L-Systems will be
detailed. This class will serve as the basis of programs to perform some algorithmic composition, and to draw some
now classic images, which are rendered according to intriguing mathematical sets. The algorithmic composition
makes good use of abstract classes. The set rendering relies on Turtle Geometry.

Why do it?
As you work through this lab you will:

Incorporate abstract classes into your programming.

Program a generative algorithm.

Play with L-Systems and fractals.

Render L-System strings graphically by means of Turtle Geometry.

Render L-System strings sonically to perform some algorithmic composition

S gt W=

Focus on the Javadoc mechanism for describing programs.

Task 1: Prepare to do the Java programming for this lab in IntelliJ

Continue to work in the CS1 project. But anticipate this lab to take some time! It is not designed to be completed
in the lab, or even within the scope of the semester. This one is for all those who would like to do something of some
significance in anticipation of subsequent study within the realm of computer programming. Part of your prepara-
tion for this lab should be adopting a mindset in which you plan to work on gaining independence with respect to
computer programming, and autonomy with respect to crafting goals within a well-defined domain, in this case the
application of L-systems to the arts.

209

Task 2: Get acquainted with L-Systems

The Wiki page for L-systems is really quite good. You might like to spend some time with it prior to continuing with
this lab. That said, all you really need to know about L-Systems is what they are, and that they have application
beyond the modeling of algae which inspired biologist Atistid Lindenmayer to invent them.

What is an L-System?

An L-System, or Lindenmayer system, is a parallel rewriting system involving the following three components:

1. an alphabet (set of symbols)
2. an axiom (string of symbols)
3. a production for each alphabet symbol that maps the symbol into a list of symbols

An L-System can also be viewed as a formal grammar, a formalism that defines a set of strings of symbols. If you
happen to be familiar with the much more well-known context free grammar, you can take delight in the fact that
L-Systems are very different in a number of significant respects!

Algae
For example, here is the Algae L-System, together with the first few generations of the system:

The Algae System:

1. Alphabet: {A,B}
2. Axiom: A
3. Productions:

(a) A— AB
(b) B— A

The first several generations, each of which, other than the first, which is just the axiom, are derived from its prede-
cessor simply by replacing each symbol by the string it produces according to its production.

A

AB

ABA

ABAAB
ABAABABA
ABAABABAABAAB

210

Cantor Dust

As a second example, here is the Cantor Dust L-System, together with the first few generations of the system:

The Cantor Dust System:

1. Alphabet: {A B}
2. Axiom: A
3. Productions:

(a) A—-ABA
(b) B»BBB

The first several generations:

A

ABA

ABABBBABA
ABABBBABABBBBBBBBBABABBBABA

Sierpinski Triangle

And as a third example, here is the Sierpinski Triangle L-System, together with the first few generations of the
system:

The Sierpinski Triangle System:

1. Alphabet: {F,G,-,+}
2. Axiom: F-G -G
3. Productions:
(a) F>F-G4+F+G-F
b) G=>GG
c) - —-
(d)

The first several generations:

F-G-G

F-G+F+G-F-GG-GG
F-G+F+G-F-GG+F-G+F+G-F+GG-F-G+F+G-F-GGGG-GGGG
F-G+F+G-F-GG+F-G+F+G-F+GG-F-G+F+G-F-GGGG+F-G+F+G-F
-GG+F-G+F+G-F+GG-F-G+F+G-F+GGGG-F-G+F+G-F-GG+F-G+
F+G-F+GG-F-G+F+G-F-GGGGGGGG-GGGGGGGG

Task 3: Create the LSystem Java Class file and the Production Java Class file

Within a package called 1system, establish two classes, both Java Class files, the first called LSystem to represent
L-Systems, and the second called Production to represent the productions of the L-Systems. The code for both
classes is presented here. For now, simply study the code, and type it in to the appropriately named Java Class files.
You will have an opportunity to test the code shortly.

211

0~ O U W N

U O W b B s B B R s D W W W W W W WWwWWwh NN DNDNDNDDNDNDLD = = s
— O O 0T Uik WNHFE OOk WP OO Utlk W OO Utk W = OO

The LSystem Java Class File

VE:

* General LSystem class, which will be the super class to particular LSystem
* classes. It represents an LSystem in terms of its name, its axiom, and its
* production set.

*/

package lsystem;

import
import
import

public

//
//
//
//

java.util.LinkedList;
java.util.List;
java.util.Scanner;

class LSystem {

Instance variables. The axiom and productions are protected so that
they can be directly referenced from subclasses. It will be up to
the subclasses to fully instantiate the L-Systems by instantiating
their axiom and productions instance variables.

private String name;
protected String axiom;
protected List<Production> productions;

/ % *
* Create an LSystem by giving it just its name. In the constructor of
* the subclass the axiom and the productions will be provided.
* @param name is the name of the L-System

*/
public LSystem(String name) {
this.name = name;
}
/*x*

* Compute a textual representation of the L-System.
* Q@return the textual representation of the L-System

*/
public String toString() {
return "Name = " + name + "\n" +
"Axiom = " + axiom + "\n" +
"Productions ...\n" + textRepresentation(productions);
}

private String textRepresentation(List<Production> productions) {
String text = "";
for (Production p : productions) {
text = text + p.toString() + "\n";
}

return text;

212

52 / *

53 * Compute the generation of the L-System indicated by the given value.
54 * Oparam generationNumber indicates the generation to be produced
55 * Q@return the generation of the L-System indicated by the parameter
56 */

57 protected String generation(int generationNumber) {

58 LinkedList<String> generations = new LinkedList<String>();

59 String generation = axiom;

60 generations.add (generation);

61 for (int i = 1; i <= generationNumber; i++) {

62 generation = next(generation);

63 generations.add (generation);

64 }

65 return generations.getLast ();

66 }

67

68 /*

69 * Produce/display some desired number of generations of the L-System.
70 * The user is asked for the number.

71 */

72 protected void generate() {

73 System.out.print ("How many generations? ");

74 Scanner scanner = new Scanner (System.in);

75 int nrOfGenerations = scanner.nextInt ();

76 LinkedList<String> generations = new LinkedList<String>();

7 String generation = axiom;

78 System.out.println("generation 0 = " + generation);

79 generations.add(generation);

80 for (int i = 1; i <= nr0fGenerations; i++) {

81 generation = next(generation);

82 generations.add(generation);

83 System.out.println("generation " + i + " = " + generation);
84 }

85 }

86

87 private String next (String generation) {

88 String result = "";

89 Scanner scanner = new Scanner (generation);

90 while (scanner.hasNext()) {

91 String symbol = scanner.next();

92 Production production = find(symbol,productions);

93 result = result + production.sequence() + " ";

94 }

95 return result.trim();

96 }

97 private Production find(String symbol, List<Production> productions) {
98 for (Production production : productions) {

99 if (production.symbol().equalsIgnoreCase (symbol)) {

100 return production;

101 }

102 }

103 return null;

104 }

105 }

213

The Production Java Class File

VE:
*

0~ O U W N

U B s B B B R R R R W W W LW W W W W W WNDNDNDNDNDNDNDNDNDLN e e e e e e e
QO OO0 ITDHDUL IR WNFRP OO Utlk WD OO Tk WNDHFE O OO0 Uk WwWwNn R~ OO

51 %

This class is used by the LSystem class in order to help represent the
productions of the system. It stores the left hand side of the production
as a symbol and the right hand side as a sequence of symbols, representing
everything in terms of character strings.

*/
package lsystem;

public class Production {

// Instance varibales: the left hand side and the right hand side of the
// production.

private String symbol;
private String sequence;

* Create an LSystem production by providing its left hand side and its
* right hand side.
* @param symbol is the left hand side of the production
* @param sequence is the right hand side of the production
*/
public Production(String symbol, String sequence) {
this.symbol = symbol;
this.sequence = sequence;

/%
* Referencer for the left hand side of the production.
* Q@return the left hand side of the production
*/
public String symbol () {
return symbol;

3

/ *
* Referencer for the right hand side of the production.
* @return the right hand side of the production
*/
public String sequence() {
return sequence;
b
/*
* Compute a simple textual representation of the L-System production.
* QO@return the textual representation of the production
*/
public String toString() {
return symbol + " --> " + sequence;

3

214

Task 4: Demo of the AlgaePainter Java Main Class file

The images displayed below are renderings of Algae strings produced by the AlgaePainter program. A demo of
the run of the program that produced the images is presented so that you will have an opportunity to think on
the behavior of the program, which takes the form of an interpreter, prior to establishing it, running it, varying its
specialized painters, and running it some more. Please just enjoy a quick look at the images and study the demo in
preparation for the next several tasks.

Images Generated by AlgaePainter

Iy

S S
S S

S S

/S

/
/

S
Yo/

215

Standard IO demo of AlgaePainter

run:
Algae>>> help

HELP - display this help menu to the standard output stream

DISPLAY - display the Algae L-System, vocabulary and axiom and productions
GENERATE - generate some number of generations, as specified by the user
PAINT - paint a rendering of some generation of the Algae system

DISPOSE - get rid of the canvas on which the rendering was painted

EXIT - terminate execution of this program

Algae>>> display

Name = Algae

Axiom = A

Productions ...
A-->AB
B -—>A

Algae>>> generate

How many generations? 6
generation 0 = A
generation
generation
generation
generation
generation
generation 6 =
Algae>>> paint
Which player (ALines or ACircles or ASquares)? ALines
Generation number? 8

Algae>>> dispose

Algae>>> paint

Which player (ALines or ACircles or ASquares)? ACircles
Generation number? 10

Algae>>> dispose

O W

BAAB
BAABABAABABA

=
0 Wwwwww
= e e e
= e e >
0w ww
= e e
W w W
= e e

A
A

Algae>>> paint

Which player (ALines or ACircles or ASquares)? ASquares
Generation number? 8

Algae>>> dispose

Algae>>> exit

BUILD SUCCESSFUL (total time: 3 minutes 54 seconds)

Task 5: Create some painters to render some Algae System images

Establish four Java Class files in a package called painters. First establish an abstract class which contains the
basic logic for rendering strings of As and Bs. All this class lacks is any notion of what it means to render A or B.
Then establish three different classes which inherit the functionality of the abstract class, and which complete the
abstract class by defining just what it means to render an A and to render a B. For now, simply study the code, and
then enter the code for each of the four classes (the abstract class and the three refinements). Soon enough you will

have an opportunity to test the code.

216

0~ O U W N

U O W b B s s B R s D W W W W W W W WwWwWwh NN DNDNDNDDNDNDLD = = s
— O O 0T Uik W OO Ik WP OO Utlk W OO Utk W = O o

The abstract ABPainter Java Class file

* K X X X X *

This abstract class serves to render images based on strings of As and Bs.
The renderer is coded in such a way that the rendering of each symbol is
left left unspecified. To complete the renderer, the methods thingA and
thingB must be specified. That is the job of the classes which extend this
abstract class.

package painters;

import java.awt.Color;
import painter.SPainter;
import java.util.Scanner;

public abstract class ABPainter {

// The simple painter, with its canvas and everything else, is the sole
// instance variable for this class.

protected SPainter painter;

/ * *
* Create an ABPainter, a painter which bases its work on strings of As and
* Bs. It is basically a simple painter (SPainter) which processes the As
* and the Bs in the string, one at a time, by somehow graphically rendering
* them.
* @param p is the work horse painter
*/
public ABPainter (SPainter p) {
painter = p;
painter.setScreenlLocation (25,25);
painter.toFront () ;
painter.setVisible (true);
painter.setColor (Color.BLACK);
}
/ * %

* Paint an image by processing the given string of A and B symbols.
* @param line is a string of As and Bs, presumably generated by some
* L-System
*/
public void paint(String line) {
Scanner symbolString = new Scanner(line);
while (symbolString.hasNext()) {
String symbol = symbolString.next ();
if (symbol.equals("A")) {
thinghA () ;
} else if (symbol.equals("B")) {
thingB () ;
}

217

52
53
54
55
56
57
58
59
60
61
62
63
64
65

00 O Uik WK

/ % *

* Reference to
* graphically.
*/

public abstract

/ * %

* Reference to
* graphically.
*/

public abstract

an encoding of what it means to render the A symbol

void thingA ();

an encoding of what it means to render the A symbol

void thingB();

The ABPainterALines

/%

* *

* A and B.
*/

package painters;

Java Class file

Subclass of the abstract ABPainter class which renders line images that
look something like ferns, something like trees, in terms of the symbols

import java.awt.Color;
import painter.SPainter;

public class ABPainterALines extends ABPainter {

VEX:

* Create a specialization of an ABPainter which renders odd looking
* fern like tree structures with red and blue limbs.
* QOparam painter is the work horse painter

*/

public ABPainterALines (SPainter painter) {
super (painter);
painter .mbk (165) ;

static private double distance = 90;
static private int delta = 45;

VEX S

* Draw a red branch, to the right, off of a bit of black trunk.

*/

public void thingA () {
painter.dfd(distance);
painter.tr(delta);
painter.setColor (Color.RED);
painter.dfd(distance);
painter.setColor (Color.BLACK) ;

218

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
95
56
57

0O Ui Wi+

I I I R N B e e e e S R e
W NP O OO0 Utk W —O o

painter
painter.
painter
painter

3

VEX:

* Draw a blue branch,

*/
public

painter.
painter
painter.
painter
painter.
painter
painter.
painter
painter

void thingB () {

dfd (distance);
.tl(delta);

setColor (Color.BLUE);
.dfd(distance);
setColor (Color .BLACK);
.mbk (distance);

tr (delta);

.mbk (distance);
.mfd(distance/10);

The ABPainterACircles Java Class file

/ *

* Subclass of the abstract ABPainter class which renders
* look something like cones in terms of the symbols A and B.

*/

package painters;

import java.awt.Color;
import java.util.Random;
import painter.SPainter;
import shapes.SCircle;

public class ABPainterACircles extends ABPainter {

VEX:

* Create a specialization of an ABPainter which renders odd looking
* cone-like structures in red and blue.
* @param painter is the work horse painter

*/
public

ABPainterACircles (SPainter painter) {
super (painter);
painter .mbk (60) ;

.mbk (distance);
tl(delta);

.mbk (distance);
.mfd(distance/10);

to the left, off of a bit of black trunk.

"dots images"

DN DN DN DN
00 J O Ot

b

static private double distance = 4;

static private int delta = 1;

static private Random random = new Random();

static private SCircle dot = new SCircle (160);

219

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

0O Uik Wi

VEX:

*

*/

Draw a red dot, adjust the position of the painter, and shrink the dot.

public void thingA () {

3

VEX:

*

*/

painter.setColor (Color.RED);
painter.paint (dot);

painter .mfd(distance);
dot.shrink(delta);

Draw a blue dot, adjust the position of the painter, and shrink the

public void thingB () {

painter.setColor (Color.BLUE);
painter.paint (dot);
painter . .mfd(distance);
dot.shrink (delta);

dot.

The ABPainterASquares Java Class file

* Subclass of the abstract ABPainter class which renders images based on
* squares that look something like melting towers in terms of the symbols
* A and B.

*/

package painters;

import
import
import
import

public

VEX:

java.awt.Color;
java.util.Random;
painter.SPainter;
shapes.SSquare;

class ABPainterASquares extends ABPainter {

* Create a specialization of an ABPainter which renders odd looking
* tower-like structures in red and blue.
* Oparam painter is the work horse painter

*/

public ABPainterASquares (SPainter painter) {

super (painter);
painter .mbk (20) ;
painter.t1(3);

220

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
o7

—
— O © 00O Uik Wi+

[t

static private double distance = 6;

static private int delta = 4;

static private Random random = new Random();
SSquare square = new SSquare (280);

/ % *
* Draw a red square, adjust the position of the painter, and shrink the
* the square, and alter the heading of the painter just a bit.
*/
public void thingA () {
painter.setColor (Color.RED);
painter.paint (square);
painter .mfd(distance);
square.shrink (delta);
painter.tr (4);
¥

/ * %
* Draw a blue square, adjust the position of the painter, and shrink the
* the square, and alter the heading of the painter just a bit.
*/
public void thingB() {
painter.setColor (Color.BLUE);
painter.paint (square);
painter .mfd(distance);
square.shrink (delta);
painter.tl(6);

Task 6: Establishment of the AlgaePainter Java Main Class file

The following program makes use of the refinements of the ABPainter class in order to draw images based on the
Algae strings. It conditionally determines which Algae string to render, and which of the three renderers thus far
established to employ. Study it. Then enter it.

The AlgaePainter Java Class file

This program can generate and process generations of the Algae L-System,

where processing amounts to performing graphical renderings of the strings

of symbols A and B of the system. The program takes the form of an interpreter.
* See the comment prefacing the constructor for additional details.
*/

package lsystem;

import java.util.ArrayList;
import java.util.List;

221

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
o7
58
59
60
61
62
63
64
65

import
import
import
import
import
import
import

public

/

¥ O X X X X X K K K K K X X X X X X X X *

*

*

*

/

java.util.Scanner;
javax.swing.SwingUtilities;
painter.SPainter;
painters.ABPainter;
painters.ABPainterACircles;
painters.ABPainterAlines;
painters.ABPainterASquares;

class AlgaePainter extends LSystem {

Create an AlgaePainter object, which is so tightly coupled to its

behavior as an interpreter that its private interpreter method is

called from this constructor. The program can represent the Algae

L-System, and can derive successive generations of strings within

the system. Specifically, the interpreter can process the following

commands:

* HELP - display this help menu to the standard
output stream

* DISPLAY - display the Algae L-System, vocabulary and

axiom and productions

* GENERATE - generate some number of generations, as
specified by the user

* PAINT - paint a rendering of some generation of the
Algae system

* DISPOSE - get rid of the canvas on which the rendering
was painted

* EXIT - terminate execution of this program

With respect to the painting, a conditional statement determines which

of a number of specialized renderers will be used to paint the image.

The painter will then do its thing to the particular generation of the

Algae system that it has to work with.

public AlgaePainter () {

}

super ("Algae");

axiom = "A";

productions = productions();
interpreter () ;

private List<Production> productions () {

3

Production pl = new Production("A","A B");

Production p2 = new Production("B","A");

ArrayList <Production> productions = new ArrayList<>();
productions.add(pl);

productions.add(p2);

return productions;

private void interpreter () {

Scanner scanner = new Scanner (System.in);
System.out.print ("Algae>>> ");

String line = scanner.next();

if (line.equalsIgnoreCase("exit")) {

222

66 System.exit (0);

67 } else if (line.equalsIgnoreCase("generate")) {

68 generate () ;

69 } else if (line.equalsIgnoreCase("paint")) {

70 paint () ;

71 } else if (line.equalsIgnoreCase("dispose")) {

72 miro.end () ;

73 } else if (line.equalsIgnoreCase("help")) {

74 help();

75 } else if (line.equalsIgnoreCase("display")) {

76 System.out.print(toString());

7 } else {

78 System.out.println("Sorry, I don’t recognize: " + line);
79 }

80 interpreter () ;

81 ¥

82

83 private static void help() {

84 System.out.println ("HELP - display this help menu to " +

85 "the standard output stream");

86 System.out.println ("DISPLAY - display the Algae L-System, " +
87 "vocabulary and axiom and productions");

88 System.out.println("GENERATE - generate some number of generations, " +
89 "as specified by the user");

90 System.out.println ("PAINT - paint a rendering of some generation " +
91 "of the Algae system");

92 System.out.println ("DISPOSE - get rid of the canvas " +

93 "on which the rendering was painted");

94 System.out.println ("EXIT - terminate execution of this program");
95 }

96

97 private SPainter miro;

98

99 private void paint () {

100 Scanner scanner = new Scanner (System.in);

101 System.out.print ("Which player (ALines or ACircles or ASquares)? ");
102 String thePainter = scanner.next();

103 System.out.print("Generation number? ");

104 int generationNumber = scanner.nextInt ();

105 miro = new SPainter (500,800);

106 ABPainter painter = new ABPainterALines(miro); // arbitrary
107 if (thePainter.equalsIgnoreCase("ALines")) {

108 painter = new ABPainterALines(miro);

109 } else if (thePainter.equalsIgnoreCase("ACircles")) {

110 painter = new ABPainterACircles(miro);

111 } else if (thePainter.equalsIgnoreCase("ASquares")) {

112 painter = new ABPainterASquares(miro);

113 }

114 painter.paint (generation(generationNumber)) ;

115 }

116

117 /* %

118 * Simply sets up the infrastructure for the program, and gets things started.
119 */

223

120
121
122
123
124
125
126
127
128

public static void main(String[] args) {
SwingUtilities.invokeLater (new Runnable () {
public void run() {
new AlgaePainter ();
}
s
}

}

Task 7: Replicate the AlgaePainter demo

By now, you should have established, in your world, all of the code needed to replicate the demo of the AlgaePainter
that was previously presented. Run the AlgaePainter program and replicate the demo!

Task 8: Change the painters and generate another AlgaePainter demo

By analogy with ABPainterALines, ABPainterACircles, and ABPainterASquares, write corresponding Java classes
ABPainterALines2, ABPainterACircles2, and ABPainterASquares2 which will generate three images when the pro-
grams are run which are interestingly different from those generated by the given programs. Simply study the three
given programs, and then write three alternates. Run the AlgaePainter program and interact with it to generate a
demo quite like that which was previously presented — but which produces different images!

Task 9: Algae System music - discussion and demos

You can render a strings of As and Bs sonically as well as visually. For example, you could bind A and B to a
couple of the simple composer’s basic sequences, or to a couple of the simple composer’s locomotive sequences, or to
a couple sequences in of the simple composer’s collection of Bach minuet fragments. Rather than rendering A and B
visually with the simple painter, this program renders them sonically with the simple composer.

Three sound files were generated when the program AlgaePlayer, to be presented, was run in the manner shown in the
following demo. If you would like to hear them before proceeding to implement the program, you will find them on the
Web site associated with this text under the names BasicAlgaeSequencel.mp3, LocomotiveAlgaeSequencel.mp3,
and BachAlgaeSequencel.mp3.

Please don’t be expecting anything particularly good from a musical point of view. Rather, expect something sug-
gestive of the sort of thing that is involved in algorithmic composition. To hear something good from a tonal music
perspective, requires very different algorithms grounded in theories of human perception and traditions of western
music. Still, this program does illustrate the basic idea behind algorithmic composition. Find an algorithm, render a
sonic stream in a manner consistent with the algorithm, quite likely by means of other algorithms. In this case, the
basic algorithm is an L-System generator, and the sole additional algorithmic infusion merely arranges for stepwise
motion of the sequences to which the vocabulary symbols (A and B) produce.

224

Standard IO demo of AlgaePlayer

run:
Algae>>> help

HELP - display this help menu to the standard output stream

DISPLAY - display the Algae L-System, vocabulary and axiom and productions
GENERATE - generate some number of generations, as specified by the user
PLAY - paint a sonic rendering of some generation of the Algae system
DISPOSE - get rid of the canvas on which the rendering was painted

EXIT - terminate execution of this program

Algae>>> display

Name = Algae

Axiom = A

Productions ...
A-->AB
B -—>A

Algae>>> generate
How many generations? 5
generation 0 = A

generation 1 = A B

generation 2 = A B A

generation 3 = A B A AB

generation 4 = ABAABABA
generation 5 = ABAABABAABAAB

Algae>>> play

Which player (Bachl or Locomotionl or Basics1)? Basicsl
Generation number? 5

line = ABAABABAABAAB

Stepwise motion = LRLRLRRRLLRL

(c,1/2) \ (®B,1/2) / (,1)

\ (B,1/2) (B,1/2) (B,1/2) (B,1/2)

(c,1/2) \ (B,1/2) / (C,1)

(B,1/2) \ (A,1/2) / (B,1)

(c,1/2) (c,1/2) (C,1/2) (C,1/2)

(B,1/2) \ (A,1/2) / (B,1)

(c,1/2) (c,1/2) (C,1/2) (C,1/2)

(D,1/2) \ (C,1/2) / (D,1)

(E,1/2) \ (D,1/2) / (E,1)

(0,1/2) (D,1/2) (D,1/2) (D,1/2)

(c,1/2) \ B,1/2) / (C,1)

(D,1/2) \ (C,1/2) / (D,1)

\ (C,1/2) (C,1/2) (C,1/2) (C,1/2)

(c,3)

Score file name, without extension, from /Users/blue/ directory? CS1Files/midi/Basicsl
Score saved as file /Users/blue/CS1Files/midi/Basics1.midi
Algae>>> play

Which player (Bachl or Locomotionl or Basicsl1)? Locomotionl
Generation number? 5

line = ABAABABAABAAB

Stepwise motion = RLRLLLRLRRLR

(c,3/4) / (D,1/4) / (E,3/4) / (F,1/4) \ (E,3/4) \ (D,1/4) \ (C,1)
/ (A,1/2) \ (G,1/2) \ (F,1/2) \ (E,1/2) \ (D,2)

NS T NN NN N

225

(C,3/4)
(D,3/4)
(G,1/2)
(B,3/4)
(E,1/2)
(B,3/4)
(A,3/4)
(F,1/2)
(C,3/4)
(B,3/4)
(G,1/2)
(c,3)

NS NN ST NN NN s

NN SN NSNS

(D,1/4)
(E,1/4)
(F,1/2)
(C,1/4)
(D,1/2)
(C,1/4)
(B,1/4)
(E,1/2)
(D,1/4)
(C,1/4)
(F,1/2)

NN SN NN NN

(E,3/4)
(F,3/4)
(E,1/2)
(D,3/4)
(c,1/2)
(D,3/4)
(C,3/4)
(D,1/2)
(E,3/4)
(D,3/4)
(E,1/2)

P U U N N N

(F,1/4)
(G,1/4)
(D,1/2)
(E,1/4)
(B,1/2)
(E,1/4)
(D,1/4)
(C,1/2)
(F,1/4)
(E,1/4)
(D,1/2)

PP A G e

(E,3/4)
(F,3/4)
(C,2)
(D,3/4)
(4,2)
(D,3/4)
(C,3/4)
(B,2)
(E,3/4)
(D,3/4)
(c,2)

~

~ -

~

(D,1/4)
(E,1/4)

(C,1/4)

(C,1/4)
(B,1/4)

(D,1/4)
(C,1/4)

~

~ -

~

€,
(D,1)

(B,1)

(B,1)
(A,1)

(C,1)
(B,1)

Score file name, without extension, from /Users/blue/ directory? CS1Files/midi/Locomotionl

Score saved as file /Users/blue/CS1Files/midi/Locomotionl.midi

Algae>>> play
Which player (Bachl or Locomotionl or Basics1)? Bachl

Generation number? 5
line = ABAABABAABAARB
Stepwise motion = LRRLRLLRRRLL

c,1 \ F,1/2) / G,1/2) /
(B,1) / (F,1/2) \ (E,1/2) /
\ (C,1) \ (F,1/2) / (G,1/2)
/ (D,1) \ (G,1/2) / (A,1/2)
c,1 / G,1/2) \ F,1/2) /
\ (O,1) \ (G,1/2) / (A,1/2)
(c,1) / (G,1/2) \ (F,1/2) /
\ B,1) \ (E,1/2) / (F,1/2)
/ (C,1) \ F,1/2) / (G,1/2)
/ (D,1) / (A,1/2) \ (G,1/2)
\ (E,1) \ (A,1/2) / (B,1/2)
(D, \ G,1/2) / (A,1/2) /
(c,1) / (G,1/2) \ (F,1/2) /

\ (C,3)

(A,1/2) /
F,D

/ (A,1/2)
/ (B,1/2)
(G,1)

/ (B,1/2)
(G,1)

/ (G,1/2)
/ (A,1/2)
/ (A,1)

/ (C,1/2)
(B,1/2) /
G,1)

(B,1/2)

/ (B,1/2)
/ (C,1/2)

/ (C,1/2)

/ (A,1/2)
/ (B,1/2)

/ (D,1/2)
(C,1/2)

Score file name, without extention, from /Users/blue/ directory? CS1Files/midi/Bachl
Score saved as file /Users/blue/CSi1Files/midi/Bachl.midi
Algae>>> exit
BUILD SUCCESSFUL (total time: 2 minutes 42 seconds)

Task 10: Create some players to sonically render some Algae L-System strings

An abstract class is presented which contains the basic logic for rendering strings of As and Bs. All it lacks is
any notion of what it means to render and A or a B. Three different classes are then presented which inherit the
functionality of the abstract class, but which complete it by saying just what it means to render an A and to render

a B. Simply enter the four classes, in appropriately named Java Class files, in a package called players.

226

0 O Ui Wi

The abstract ABPlayer Java Class file

* ¥ X X X X ¥

This abstract class serves to render melodies based on strings of As and Bs.
The renderer is coded in such a way that the rendering of each symbol is
left left unspecified. To complete the renderer, the methods thingA and
thingB must be specified. That is the job of the classes which extend this
abstract class.

package players;

import composer.SComposer;
import java.util.Random;
import java.util.Scanner;

public abstract class ABPlayer {

// The simple composer is the sole instance variable for this class.

protected SComposer composer;

/*x*

* Create an ABPlayer, a performer which bases its work on strings of As and
* Bs. It is basically a simple composer (SComposer) which processes the As
* and the Bs in the string, one at a time, by somehow sonically rendering
* them.

* @param c is the work horse painter

*/
public ABPlayer (SComposer c) {

composer = C;

X
/*x*

* Play a melody by processing the given string of A and B symbols.
* Q@param line is a string of As and Bs, presumably generated by some
* L-System. But there is a "twist". An "add on" imposes stepwise
* motion, for the most part, on the melodic fragments to which the
* A and B are bound.
*/
public void play(String line) {
composer .beginScore () ;
composer.text ();

String motionLine = motionLine(line) + "S";
int x = 0;
Scanner symbolString = new Scanner(line);

while (symbolString.hasNext ()) {
String symbol = symbolString.next ();
if (symbol.equals("A")) {
thingA ();
} else if (symbol.equals("B")) {
thingB () ;

227

51 ¥

52 if (symbolString.hasNext()) {

53 String direction = motionLine.substring(x,x+1);
54 changePitch (composer ,direction);

55 X = x + 1;

56 ¥

57 }

58 composer . .mms_31_JSB_M1();

59 composer .untext () ;

60 composer .saveScore () ;

61 ¥

62

63 private String motionLine (String line) {

64 System.out.println("line = " + line);

65 int lineLength = linelLength(line);

66 int motionLinelength = linelength-1;

67 String orderedMotionLine = orderedMotionLine(motionLineLength);
68 String unorderedMotionLine = unorderedMotionLine(orderedMotionLine);
69 System.out.println("Stepwise motion = " + unorderedMotionLine);
70 return unorderedMotionLine;

71 }

72

73 private int linelLength(String line) {

74 if (line.equals("")) {

75 return O;

76 } else if (line.substring(0,1).equals(" ")) {

7 return linelength(line.substring(1));

78 } else {

79 return 1 + linelength(line.substring(1));

80 }

81 }

82

83 private String orderedMotionLine (int motionLineLength) {

84 if (motionLinelLength == 0) {

85 return "";

86 } else if (motionLinelLength == 1) {

87 return "S";

88 } else {

89 return "RL" + orderedMotionLine(motionLinelLength-2);
90 }

91 }

92

93 private String unorderedMotionLine(String orderedMotionLine) {
94 if (orderedMotionLine.length() < 2) {

95 return orderedMotionLine;

96 } else {

97 String element = pick(orderedMotionLine);

98 String remainder = remove(element,orderedMotionLine);
99 return element + unorderedMotionLine (remainder);

100 }

101 }

102

103 private Random generator = new Random();

104

228

105 private String pick(String orderedMotionLine) {

106 int rn = generator.nextInt (orderedMotionLine.length());

107 return orderedMotionLine.substring(rn,rn+1);

108 }

109

110 private String remove(String element, String bag) {

111 int position = bag.index0f (element);

112 return bag.substring(0,position) + bag.substring(position+1);
113 }

114

115 private void changePitch(SComposer composer, String direction) {
116 if (direction.equalsIgnoreCase("R")) {

117 composer.rp();

118 } else if (direction.equalsIgnoreCase("L")) {

119 composer.lp();

120 } else if (direction.equalsIgnoreCase("S")) {

121

122 }

123 }

124

125 /[**

126 * Reference to an encoding of what it means to render the A symbol
127 * sonically.

128 */

129 public abstract void thingA();

130

131 /* %

132 * Reference to an encoding of what it means to render the B symbol
133 * sonically.

134 */

135 public abstract void thingB();

136

137}

The ABPlayerBasics Java Class file

1 /%

2 * Subclass of the abstract ABPlayer class which renders simple melodies by
3 * binding A and B each to a simple 4 beat sequence.

4 */

)

6 package players;

7

8 import composer.SComposer;

9

10 public class ABPlayerBasics extends ABPlayer {

11

12 /*x*

13 * Create a specialization of an ABPlayer which renders simple melodic
14 * melodies by gluing together simple 4 beat fragments.

15 * Q@param composer is the work horse composer

16 */

229

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

00 O Uik WK+

WK NN NN NN DN D — e e e e
SO X TN EWN OO0 U R WNR O ©

public ABPlayerBasics(SComposer composer) {
super (composer) ;

}

VEX:
* Play a simple 4 beat sequence.
x/
public void thingA () {
composer.s2(); composer.mms6(); composer.x2();

3

/ * %
* Play a simple 4 beat sequence.
*/
public void thingB () {
composer.s2(); composer.mms3(); composer.x2();

3

The ABPlayerLocomotion Java Class file

/ *

* Subclass of the abstract ABPlayer class which renders simple melodies by
* binding A and B each to a simple locomotive sequences.

*/

package players;

import composer.SComposer;
public class ABPlayerLocomotion extends ABPlayer {

/ % *
* Create a specialization of an ABPlayer which renders simple melodic
* melodies by gluing together simple locomotive fragments.
* @param composer is the work horse composer
*/
public ABPlayerLocomotion (SComposer composer) {
super (composer) ;

}

/*x*
* Play a simple 4 locomotive sequence.
*/
public void thingA () {
composer.s2(); composer.mms_87_StaggerUpDown(); composer.x2();

}

/ * %
* Play a simple 4 locomotive sequence.

*/

230

31
32
33
34
35

0O Ui Wi+

O W W WWWRNDNDNDDDNDDDNDNDDNNDNDDLN = == = =
T W N HFRF OO Uk WINHFRF OOWOoOIDUk W RO

public void thingB() {
composer.s2(); composer.mms_85_StrollDown(); composer.x2();

}

The ABPlayerBach Java Class file

/ *
* Subclass of the abstract ABPlayer class which renders minuet like melodies
* by binding A and B each to a 3 beat sequence lifted from a Bach minuet.

x/
package players;

import composer.SComposer;

public class ABPlayerBach extends ABPlayer {

/*x*
* Create a specialization of an ABPlayer which renders a minuet 1like
* melody by sequencing fragments stolen from Bach minuets.
* QOparam composer is the work horse composer
*/
public ABPlayerBach (SComposer composer) {
super (composer) ;

3

/ * %
* Play a 5 note 3 beat sequence lifted from a Bach minuet.
*/
public void thingA () {
composer . .mms_35_JSB_M9 ();
¥

/*x*
* Play a 4 note 3 beat sequence lifted from a Bach minuet.
*/
public void thingB() {
composer .mms_34_JSB_M7 () ;
by

Task 11: Establishment of the AlgaePlayer Java Main Class file

The following program makes use of the refinements of the ABPlayer class in order to play melodic sequences based
on the Algae strings. It conditionally determines which Algea string to render, and which of the three renderers thus
far established to employ. Study it. Then enter it.

231

0~ O U W N

U UL W b B s s D R s D W W W W WWWwWWwWwWwh NN DNDNDNDDNDNDLD = = s
— O O 0T Uik WNNHFE OO0 Ik WP OO IDDUtlr W OO Utk W = OO

The AlgaePlayer Java Class file

* XK X X X X *

This abstract class serves to render melodies based on strings of As and Bs.
The renderer is coded in such a way that the rendering of each symbol is
left left unspecified. To complete the renderer, the methods thingA and
thingB must be specified. That is the job of the classes which extend this
abstract class.

package players;

import composer.SComposer;
import java.util.Random;
import java.util.Scanner;

public abstract class ABPlayer {

// The simple composer is the sole instance variable for this class.
protected SComposer composer;

/*x*
Create an ABPlayer, a performer which bases its work on strings of As and
Bs. It is basically a simple composer (SComposer) which processes the As
and the Bs in the string, one at a time, by somehow sonically rendering
them.

* @param c is the work horse painter
*/
public ABPlayer (SComposer c) {
composer = C;

* ¥ ¥ ¥ X

¥
/*x*
Play a melody by processing the given string of A and B symbols.
@param line is a string of As and Bs, presumably generated by some
L-System. But there is a "twist". An "add on" imposes stepwise
motion, for the most part, on the melodic fragments to which the
* A and B are bound.
*/
public void play(String line) {
composer.beginScore () ;
composer.text ();

* ¥ ¥ ¥ X

String motionLine = motionLine(line) + "S";
int x = 0;
Scanner symbolString = new Scanner(line);

while (symbolString.hasNext()) {
String symbol = symbolString.next ();
if (symbol.equals("A")) {
thingh () ;
} else if (symbol.equals("B")) {
thingB () ;
¥

232

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
(0]
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

3

if (symbolString.hasNext()) {

String direction = motionLine.substring(x,x+1);

changePitch (composer ,direction);
x = x + 1;
}
}
composer .mms_31_JSB_M1();
composer .untext () ;
composer .saveScore () ;

private String motionLine(String line) {

System.out.println("line = " + line);
int linelLength = linelLength(line);
int motionLinelength = linelength-1;

String orderedMotionLine = orderedMotionLine(motionLineLength);

String unorderedMotionLine = unorderedMotionLine (orderedMotionLine);

System.out.println("Stepwise motion = "

return unorderedMotionLine;

private int linelLength(String line) {

if (line.equals("")) {
return O;
} else if (line.substring(0,1).equals("
return lineLength(line.substring (1))
} else {

+ unorderedMotionLine);

")) A

)

return 1 + linelLength(line.substring(1));

}

private String orderedMotionLine(int motionLinelLength) {

if (motionLineLength == 0) {
return "";

} else if (motionLinelength == 1) {
return "S";

} else {

return "RL" + orderedMotionLine(motionLinelLength-2);

}

private String unorderedMotionLine (String orderedMotionLine) {

if (orderedMotionLine.length() < 2) {
return orderedMotionLine;

} else {
String element = pick(orderedMotionLine);
String remainder = remove(element,orderedMotionLine);
return element + unorderedMotionLine (remainder);
}
}
private Random generator = new Random();

233

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

private String pick(String orderedMotionLine) {
int rn = generator.nextInt (orderedMotionLine.length());
return orderedMotionLine.substring(rn,rn+1);

private String remove(String element, String bag) {
int position = bag.index0f (element);
return bag.substring(0,position) + bag.substring(position+1);

private void changePitch(SComposer composer, String direction) {
if (direction.equalsIgnoreCase("R")) {
composer.rp();
} else if (direction.equalsIgnoreCase("L")) {
composer.lp();
} else if (direction.equalsIgnoreCase("S")) {

}

/*x*

* Reference to an encoding of what it means to render the A symbol
* sonically.
*/

public abstract void thingA();

/* %

* Reference to an encoding of what it means to render the B symbol
* sonically.
*/

public abstract void thingB();

3

Task 12: Replicate the AlgaePlayer demo

By now, you should have established, in your world, all of the code needed to replicate the demo of the AlgaePlayer
that was previously presented. Run the AlgaePlayer program and replicate the demo!

Task 13: Change the players and generate a AlgaePlayer demo

By analogy with ABPlayerBasics, ABPlayerLocomotions, and ABPlayerBach, write corresponding Java classes
ABPlayerBasics2, ABPlayerLocomotions2, and ABPlayerBach2 which will generate three melodic lines when the
programs are run which are interestingly different from those generated by the given programs. Simply study the
three given programs, and then write three alternates. Run the AlgaePlayer program and interact with it to gen-
erate a demo quite like that which was previously presented — but which produces different melodic lines!

234

Task 14: Generating Sierpinski Triangle images

The Sierpinski Triangle is an example of a self similar object, or fractal. Fractals can be rendered at any level of
complexity. Six renderings of the Sierpinski Triangle are presented in the following diagram:

~ -
\\ g
\‘\\\ \\\
\\\ e ~ \
\\> 7 \> // N
~ \\ s
- e P -
/</
/ ///

o

gy
L7

-

7

vy
AT
e
Y &
T

A

& &
7

vaviras
L7

v, v.v.wrv‘u

TTRTT
AT
&
&
X
7

b

AR
Xy

%
<

g

These images have been generated by means of the previously presented L-System and a Turtle Geometry rendering
scheme. At this point, you might like to Google “Turtle Geometry” and get acquainted with the basics of the system.
The simple painter of the NPW was inspired by Turtle Geometry. For many purposes, you can forget that there
is any distinction between the two. However you wish to conceive of the screen creature, this is the set of action
bindings that is used to produce Sierpinski Triangles:

F: draw a line in the forward direction for some distance &
G: draw a line in the forward direction for some distance &
+: turn 120 degrees to the left

. turn 120 degrees to the right

- =

The six images shown were produced by means of running the SierpinskiTrianglePainter program as shown in
the subsequent demo. (Each image was clipped from the canvas and subsequently merged into a composite image
by hand.

After studying the demo in relation to the images, please study the accompanying code that forms an interpreter for
deriving generations of the Sierpinski L-System and rendering corresponding Sierpinski Triangles. Then, type it in,
and run it, mimicking the demo.

(You may have guessed that a variant of this program was used to create the connect-the-dots opportunity which
appears on the front cover of this manual.)

235

Standard IO demo of SierpinskiTrianglePainter

run:
SierpinskiTriangle>>> help

HELP - display this help menu to the standard output stream

DISPLAY - display the L-System, vocabulary and axiom and productions
GENERATE - generate some number of generations, as specified by the user
PAINT - paint a rendering of some generation of the system

SLOW - slow down the painting, if it is fast

FAST - slow down the painting, if it is slow

DISPOSE - get rid of the canvas on which the rendering was painted

EXIT - terminate execution of this program

SierpinskiTriangle>>> display

Name = SierpinskiTriangle

Axiom = F - G - G

Productions ...
F-—>F-G+F+G-F
G-—>GG

___>_

+ —=> +

SierpinskiTriangle>>> generate

How many generations? 4

generation 0 = F - G - G

generation 1 = F -G+ F+G-F-GG-GG

generation 2 =F -G+ F+G-F-GG+F-G+F+G-F+GG-F-G+F+G-F-GGGG
-GGGG

generation 3= F -G+ F+G-F-GG+F-G+F+G-F+GG-F-G+F+G-F-GGGG
+F-G+F+G-F-GG+F-G+F+G-F+GG-F-G+F+G-F+GGGG-F -G+
F+G-F-GG+F-G+F+G-F+GG-F-G+F+G-F-GGGGGGGG-GGGGG
GGG

generation 4 = F -G+ F+G-F-GG+F-G+F+G-F+GG-F-G+F+G-F-GGGG

+F-G+F+G6G6-F-GG+F-G+F+G-F+GG-F-G+F+G-F+GGGG-F -G+
F+6-F-GG+F-G+F+G-F+6G6GG-F-G+F+G-F-GGGGGGGG+F-G+F
+6-F-GG+F-G+F+G-F+GG-F-G+F+G-F-GGGG+F-G+F+G-F -
GG+F-G+F+G-F+GG-F-G+F+G-F+GGGG-F-G+F+G-F-GG+F -
G+F+G-F+G6GG-F-G+F+G-F+GGGGGGGG-F-G+F+G-F-GG+F-G
+F+G-F+6G-F-G+F+G-F-GGGG+F-G+F+G-F-GG+F-G+F+G -
F+66-F-G+F+G-F+GGGG-F-G+F+G-F-GG+F-G+F+G-F+GG -
F-G+F+G-F-GGGGGGGGGGGGGGGG-GGGGGGGGGGGGGGGG

SierpinskiTriangle>>> paint
Generation number? 0O
SierpinskiTriangle>>> dispose
SierpinskiTriangle>>> paint
Generation number? 1
SierpinskiTriangle>>> dispose
SierpinskiTriangle>>> paint
Generation number? 2
SierpinskiTriangle>>> dispose
SierpinskiTriangle>>> paint
Generation number? 3
SierpinskiTriangle>>> dispose
SierpinskiTriangle>>> paint

236

0~ O U W N

Generation number? 4

SierpinskiTriangle>>> dispose

SierpinskiTriangle>>> paint
Generation number? 5

SierpinskiTriangle>>> dispose

SierpinskiTriangle>>> exit
BUILD SUCCESSFUL (total time:

1 minute 28 seconds)

SierpinskiTrianglePainter program

/ *

This program can generate and process generations of the Sierpinski Triangle

L-Sy

stem,

where processing amounts to performing graphical renderings of the

strings of symbols A and B of the system. The program takes the form of an

*
*/

package lsystem;

import
import
import
import
import
import
import

public

/

O X X X X K K K K K K K X X X X ¥ X
*

*

*/

java.util
java.util
java.util

interpreter.

.Arraylist;
.List;

.Scanner;

See the comment prefacing the constructor for additional details.

javax.swing.SwingUtilities;
painter.SPainter;
painters.STPainter;
painters.STPainterlLines;

class SierpinskiTrianglePainter extends LSystem {

Create an SierpinskiTrianglePainter object, which is so tightly coupled to
its behavior as an interpreter that its private interpreter method is
called from this constructor. The program can represent the Algae

and can derive successive generations of strings within

L-System,

the system.

commands :

Specifically, the interpreter can process the following

* HELP

* GENERATE
* PAINT

* SLOW -

- display this help menu to the standard

output stream

* DISPLAY - display the L-System, vocabulary and axiom
and productions

- generate some number of generations, as

specified by the user

paint a rendering of some generation of the

system

* FAST
* DISPOSE
was painted

* EXIT

slow down the painting, if it is fast

- speed up the painting, if it is slow

- get rid of the canvas on which the rendering

- terminate execution of this program

public SierpinskiTrianglePainter () {
super ("SierpinskiTriangle");

axiom

IIF

G

Gll;

237

44
45
46
47
48
49
50
51
52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
(0]
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

productions = productions ();
interpreter () ;

private List<Production> productions () {

Production pl = new Production("F","F - G + F + G - F");
Production p2 = new Production("G","G G");

Production p3 = new Production("-","-");

Production p4 = new Production("+","+");
ArrayList<Production> productions = new ArrayList<>();

productions.add(pl);
productions.add(p2);
productions.add(p3);
productions.add(p4);
return productions;

private void interpreter () {

Scanner scanner = new Scanner (System.in);
System.out.print ("SierpinskiTriangle>>> ");

String line = scanner.next ();

if (line.equalsIgnoreCase("exit")) {

System.exit (0);

} else if (line.equalsIgnoreCase("generate")) {

generate () ;

} else if (line.equalsIgnoreCase("paint")) {

paint) ;

} else if (line.equalsIgnoreCase("slow")) {

waitTime =500;

} else if (line.equalsIgnoreCase("fast")) {

waitTime = 0;

} else if (line.equalsIgnoreCase("dispose")) {

miro.end ();

} else if (line.equalsIgnoreCase("help")) {

help();

} else if (line.equalsIgnoreCase("display")) {
System.out.print(toString());

} else {
System.out.println("Sorry,
X

interpreter () ;

3

private static void help () {

I don’t recognize:

+ line);

System.out.println ("HELP - display this help menu to " +
"the standard output stream");
System.out.println ("DISPLAY - display the L-System,
"vocabulary and axiom and productions");
System.out.println ("GENERATE - generate some number of generations,
"as specified by the user");

System.out.println("PAINT - paint a rendering of some generation " +

"of the system");

System.out.println("SLOW - slow down the painting,

238

n +

if it is fast");

+

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

0~ O U W N

= e e e
DU WD~ OO

System.out.println("FAST - slow down the painting, if it is slow");
System.out.println("DISPOSE - get rid of the canvas " +

"on which the rendering was painted");
System.out.println("EXIT - terminate execution of this program");

private SPainter miro;
private int waitTime = O;

private void paint () {
Scanner scanner = new Scanner (System.in);
System.out.print ("Generation number? ");
int generationNumber = scanner.nextInt ();
miro = new SPainter (900,900);
System.out.println(generation(generationNumber));
STPainter painter = new STPainterLines(miro);
painter.paint (generationNumber , generation(generationNumber));

}

/*x*
* Simply sets up the infrastructure for the program, and gets things
* started.
* Q@param args 1is not used
*/
public static void main(String[] args) {
SwingUtilities.invokeLater (new Runnable () {
public void run() {
new SierpinskiTrianglePainter ();

}
)

STPainter abstract class

* X X X X X X *

This abstract class serves to render images based on strings of G’s, F’s, +’s,
and -’s.

The renderer is coded in such a way that the rendering of each symbol is

left unspecified. To complete the renderer, the methods doG, doF, doPlus, and

doMinus must be specified. That is the job of the classes which extend this

abstract class.

package painters;

import painter.SPainter;

import java.util.Scanner;

public abstract class STPainter {

239

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

00 O Uik WK+

el ol
=W~ OO

protected SPainter painter;

public STPainter (SPainter painter) {
this.painter = painter;

3

public void paint(int generationNumber, String generationString) {
double movementUnit =
painter.canvasWidth() / (Math.pow(2,generationNumber) + 2.0);

painter .mbk (painter.canvasWidth() / 2.0 - movementUnit);
painter .mrt (painter.canvasWidth() / 2.0 - movementUnit);
Scanner symbolString = new Scanner (generationString);

while (symbolString.hasNext()) {

String symbol = symbolString.next ();

if (symbol.equals("F")) {
doF (movementUnit);

} else if (symbol.equals("G")) {
doG (movementUnit);

} else if (symbol.equals("-")) {
doMinus () ;

} else if (symbol.equals("+")) {
doPlus () ;

}

public abstract void doF (double distance);
public abstract void doG(double distance);
public abstract void doMinus ();

public abstract void doPlus ();

STPainterLines class

/ *
* Subclass of the abstract STPainter class which renders line images that
* contain nested triangles in terms of F, G, +, and -.

x/

package painters;

import painter.SPainter;

public class STPainterLines extends STPainter{
public STPainterLines (SPainter painter) {

super (painter);

}

240

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

public void doF(double distance) {
painter.dfd(distance);

}

public void doG(double distance) {
painter.dfd(distance);

}

public void doMinus () {
painter.tl(120);
¥

public void doPlus() {
painter.tr (120);
}

Task 15: Cantor Dust painting

By analogy with the AlgaePainter program, write a CantorDustPainter program. Notice that the Cantor L-
System has a vocabulary of just two symbols, A and B, so that you can make use of the ABPainter program as
is. By analogy with the ABPainterALines program write an ABPainterCDLines program. By analogy with the
ABPainterACircles program write an ABPainterCDCircles program. By analogy with the ABPainterASquares
program write an ABPainterCDSquares program. Then, run the CantorDustPainter program to generate three
images, one based on lines, one based on circles, and one based on squares.

Task 16: Cantor Dust playing

By analogy with the AlgaePlayer program, write a CantorDustPlayer program. Again, notice that the Can-
tor L-System has a vocabulary of just two symbols, A and B, so that you can make use of the ABPainter pro-
gram as is. By analogy with the ABPlayerBasics program write an ABPainterCDBasics program. By analogy
with the ABPainterALocomotives program write an ABPainterCDLocomotives program. By analogy with the
ABPainterABach program write an ABPainterCDBach program. Then, run the CantorDustPainter program to gen-
erate three images, one based on the simple composer’s basics, one based on the simple composer’s locomotives, and
one based on the simple composer’s stash of Bach sequences.

Task 17: Generate the Javadocs for your CS1 project

Generate the Javadocs for your CS1 project. Google how to do it, if you should need to. (It is very easy!) Take a
good look at the Web documents that are generated for your L-System programs, in particular.

Task 18: Incorporate artifacts into your site

Incorporate code, images, and sound files into your work site as you see fit.

241

Task 19: Reflection

Think for a little while about this lab and your engagement with it. What did you learn that is conceptually signifi-
cant? What did you learn that is technologically useful? What is your most salient thought about the lab and your
engagement with it?

242

Exit

C. A. R. Hoare on COMPUTER SCIENCE

What is the central core of the subject [computer science]? What is it that distinguishes it from the separate subjects
with which it is related? What is the linking thread which gathers these disparate branches into a single discipline.
My answer to these questions is simple - it is the art of programming a computer. It is the art of designing efficient
and elegant methods of getting a computer to solve problems, theoretical or practical, small or large, simple or
complex. It is the art of translating this design into an effective and accurate computer program.

Perspective

This text, and the course to which it contributes, are centered on programming in the small. If you methodically
worked through all of the labs, and if you dedicated yourself to completing the programming assignments, you prob-
ably have a pretty good idea of how one person goes about writing a relatively small, relatively simple computer
program. But you should know that this is just a part of the field of computer science. There are many other parts,
as well. One of these other parts can be characterized as programming in the large. This pertains to writing large
software systems. Teams of programmers are involved, and systems of modules are designed to fit together in elegant
ways, ways that ideally afford ease of maintenance, modification, and extension. The CS2 course is designed to refine
and expand your knowledge of programming in the small. Other courses in the curriculum explore ideas and issues
surrounding programming in the large. Programming in the small vs programming in the large is just one of many
dichotomous ways to think about aspects of computer science. The field is huge, packed with powerful ideas, and
constantly pregnant with respect to practical applications.

Although computer science knowledge can certainly lead to attractive careers in terms of monetary reward and
professional satisfaction, it is perhaps the fact that computer science is associated with a way of thinking that rec-
ommends it more than any other for a position in the college curriculum.

=—> Why study computer science? To learn a powerful way of thinking!

Summary of the Most Salient Elements of the Laboratories

1. Lab 1: Hello World! Hello You! > Java ¢ Integrated Development Environment (IntelliJ) ¢ templates ¢
program execution ¢ program IO ¢ widgets ¢ appreciating the importance of tending to detail at the level of
the token

2. Lab 2: Hello Painter! Hello Composer! ©> object creation ¢ object use ¢ library files ¢ microworlds
o Nonrepresentational Painting World (NPW) ¢ Modular Melody World (MMW) ¢ graphics programming <
sonic programming

3. Lab 3: Establishing a CS1 Work Site > Emacs ¢ HTML ¢ CSS ¢ Web development ¢ file structure ¢
source files ¢ graphics files

4. Lab 4: Expressions and Shapes World Problem Solving > fully parenthesized expression ¢ English/-
Java representations of arithmetic expressions ¢ simple geometric/algebraic problem solving ¢ Crypto problem

243

10.

11.

12.

13.

14.

15.

solving ¢ problem solving with simple shape objects ¢ inscribing circles ¢ circumscribing circles

Lab 5: An Interpreter Featuring Loop Forever and Selection > interpreters ¢ loop forever ¢ break
statement ¢ multiway conditional statement ¢ random number generation ¢ dialog box ¢ string comparison
Lab 6: Functions and Commands > define functions ¢ define commands ¢ apply the principle of stepwise
refinement ¢ work with IntelliJ to effectively engage in stepwise refinement ¢ program by modifying an extant
program ¢ while statement ¢ conditional execution ¢ generate random colors

Lab 7: String Thing > get acquainted with length, index0f, two versions of the substring function, and
the equalsIgnoreCase functiono mindfully perform abstraction by writing methods to generalize on specific
computations ¢ attend to detail with respect to positions of items in a sequence

Lab 8: Array Play o array declaration ¢ array creation ¢ array indexing ¢ file processing ¢ exceptions ¢
program by analogy ¢ data file creation

Lab 9a: Simple List Processing > ArrayList ¢ generics ¢ list methods: add, set get, size ¢ comparing/-
contrasting arrays and lists

Lab 9b: List Processing with Streams > String. join ¢ use Java streams ¢ stream transformation func-
tions: map, filter, reduce ¢ collect the results from stream processing ¢ write programs that do the same
thing in multiple ways

Lab 10: Establishing and Using Classes > refining pseudocode ¢ "mechanical” translation of code ¢ data
control loop vs counter control loop ¢ generating and refining stubs

Lab 11: Modeling Objects with Classes > class definition ¢ establish instance variables ¢ define construc-
tors ¢ define methods ¢ establish an interface ¢ implement an interface

Lab 12: Grapheme to Color Synesthesia > parallel arrays ¢ sequential search ¢ drawing text ¢ mapping
o synesthetic simulation

Lab 13: Chromesthesia > incremental program development ¢ mapping pitch classes to sounds ¢ integrate
graphic processing with sonic processing ¢ simulate the experience of a chromesthete ¢ process arrays of objects
¢ symbolic processing ¢ scanning/interpretation

Lab 14: Fun with Fractals > self-similarity ¢ fractals ¢ L-Systems ¢ programming generative algorithms ©
abstract classes ¢ algorithmic composition ¢ Turtle Geometry

244

Appendices

30 Appendix 1: Nonrepresentational Painting World (NPW)

This appendix presents a partial specification of the Nonrepresentational Painting World, or NPW, which features
(1) two-dimensional shape objects, and (2) simple painter objects that can render the shapes in various ways on
a 2D area called the canvas. This environment affords opportunities to explore ideas associated with the world of
nonrepresentational art and the work of graphic design. Only the most basic elements of functionality are presented
here.

Interpreting Entries in the Appendices

Each entry in this appendix is made up of terminal symbols and non-terminal symbols. Terminal symbols are
those which require no modification by you — type them exactly as shown. Non-terminal symbols stand for something
of the specified type, and should be replaced with something appropriate to the type specified. For example, in order
to use the version of paint which takes an SCircle argument:

SPainter .paint(SCircle)
you must replace SPainter and SCircle with instances of the appropriate types.

Methods and constructors which return values have the types of those values shown after the — symbol. For
example, you can see below that the constructors for SPainter return instances of that type.

SPainter Functionality

A simple painter is a screen creature that is bound to a 2D graphics area, called its canvas. The painter can move
about the canvas and paint (fill in) or draw (outline) shapes of various sorts on the canvas, provided they are within
reach. A painter is modeled in terms of several properties, most notably its location, and its heading. To do its
rendering tasks, the painter possesses a brush, which has a width, and which can render shapes in virtually any color.
There are a number of constructors associated with the SPainter class, including:

e new SPainter(String, int, int) — SPainter
returns a simple painter in a canvas, labelled by the given string, the width and height of which are equal to
the two integer values

e new SPainter(int, int) — SPainter
returns a simple painter in an undecorated (no close or shrink boxes), unlabelled black framed canvas, the
width and height of which are equal to the two integer values

There is functionality to move the painter forward, backward, right or left, with respect to the direction in which it
is facing, to turn it in various ways, to paint and draw certain shapes, to draw text, and to do a number of other
things.:

e SPainter .canvasHeight () — int

returns the height of the canvas (including 22 for the top bar, if there is one)
e SPainter.canvasWidth() — int

returns the width of the canvas
e SPainter.center() — Point2D.Double

returns the center point on the canvas

245

SPainter.cvtDegToRad (double) — double

converts the given number of degrees to the corresponding number of radians

SPainter .dbk(double)

the painter moves backward the given distance with respect to its present heading, leaving a trace
SPainter .dfd(double)

the painter moves forward the given distance with respect to its present heading, leaving a trace
SPainter .draw(SCircle)

draws (the border of) the given circle around to painter, using the current paint color

SPainter .draw(SPolygon)

draws (the border of) the given polygon around to painter, using the current paint color

SPainter .draw(SRectangle)

draws (the border of) the given rectangle around to painter, using the current paint color

SPainter .draw(SSquare)

draws (the border of) the given square around to painter, using the current paint color

SPainter .draw(String)

draws the string centered around the painter, horizontally

SPainter .drawLineTo (Point2D.Double)

the painter draws a line from its current position to the position given by the point, in the current color, and
remains at the given point

SPainter .drawLineToI (Point2D.Double)

the painter draws a line from its current position to the position given by the point, in the current color, and
then returns to the starting point

SPainter .faceNorth()

directs the painter to set its heading to 0 degrees (face north)

SPainter .frame() — SRectangle

returns the bordering rectangle of the canvas

SPainter .getBoundingRectangle() — Rectangle2D.Double

get the Java 2D rectangle which bounds the canvas

SPainter .getBoundingSuperRectangle() — Rectangle2D.Double

get a Java 2D rectangle which is a bit larger thang the one which bounds the canvas

SPainter .heading() — double

returns the painter’s current heading, [0,360)

SPainter .mbk(double)

the painter moves backward the given distance with respect to its present heading, without leaving a trace
SPainter .mfd(double)

the painter moves forward the given distance with respect to its present heading, without leaving a trace
SPainter .mlt(double)

the painter moves to its left the given distance with respect to its present heading, without leaving a trace
SPainter .move ()

moves the painter to a random position (location) on the canvas

SPainter .moveTo(Point2D.Double)

sets the position (location) of the painter to the (x,y) coordinates embedded within the given point, with respect
to the top-left corner of the canvas

SPainter .moveToCenter ()

move the painter to the center of the canvas

SPainter .moveWithinNeighborhood(int)

move the painter to a position within the circle of radius equal to the given number centered at the location of
the painter, without changing the heading of the painter

SPainter .mrt(double)

the painter moves to its right the given distance with respect to its present heading, without leaving a trace
SPainter .paint(SCircle)

paint the given circle around to painter, using the current paint color

246

SPainter .paint (SPolygon)

paint the given polygon around to painter, using the current paint color
SPainter .paint (SRectangle)

paint the given rectangle around to painter, using the current paint color
SPainter .paint (SSquare)

paint the given square around to painter, using the current paint color
SPainter .paintBrushColor() — Color

returns the color currently on the painter’s brush

SPainter .paintFrame(Color,int)

paint a border around the painter’s canvas of width equal to the given integer and of color equal to the given
color

SPainter .pause ()

ask the painter to pause for 1 second

SPainter .pause(int)

ask the painter to pause for the given number of milliseconds second
SPainter .position() — Point2D.Double

return the painter’s position (location) on the canvas

SPainter .random() — Point2D.Double

returns a random point on the canvas

SPainter .restoreColor()

restore the most recently saved paint color

SPainter .saveColor ()

save the current paint color

SPainter .setBrushWidth(int)

set the painter’s brush width to the given value

SPainter .setColor (Color)

set the color that the painter will draw or paint with to the given color
SPainter .setFontSize(int)

set the font size to the given value

SPainter .setHeading(int)

the painter sets its heading to the given value

SPainter .setPosition(Point2D.Double)

sets the position (location) of the painter to the (x,y) coordinates embedded in the given point, with respect
to the top-left corner of the canvas

SPainter .setRandomColor ()

set the color that the painter will draw or paint with to a random color
SPainter .setRandomBlueColor ()

set the color that the painter will draw or paint with to a random blue color
SPainter .setRandomGreenColor ()

set the color that the painter will draw or paint with to a random green color
SPainter .setRandomRedColor ()

set the color that the painter will draw or paint with to a random red color
SPainter .setScreenlLocation(int, int)

place the painter’s frame, the upper left corner, at the screen location given
SPainter .setVisible(boolean)

makes the frame within which the painter is housed appear or disappear on the screen
SPainter .ta()

the painter does an about face

SPainter .t1()

the painter turns 90 degrees to its left

SPainter .tl(int)

the painter turns the given number of degrees to its left

247

e SPainter.tr()

the painter turns 90 degrees to its right
e SPainter.tr(int)

the painter turns the given number of degrees to its right
e SPainter .wash()

simply white wash the canvas

SShapes Functionality

SCircle Functionality

A simple circle is modeled in terms of just one property, its radius. There is just one constructor associated with the
SCircle class, which takes the radius of the new circle as its sole parameter.

e new SCircle(double) — SCircle
return a simple circle, the radius of which is given by the real number

There is functionality for solving simple problems involving circles and for creating images based on circles, including;:

e SCircle.area() —> double
return the area of the circle
e SCircle.circumscribingPolygon(int) — SPolygon
return the circumscribing polygon of the given degree of the circle
e SCircle.circumscribingSquare() — SSquare
return the circumscribing square of the circle
e SCircle.diameter() — double
return the diameter of the circle
e SCircle.expand(double)
increase the radius of the circle by the given number
e SCircle.inscribingPolygon(int) — SPolygon
return the inscribing polygon of the given degree of the circle
e SCircle.inscribingSquare() — SSquare
return the inscribing square of the circle
e SCircle.perimeter() — double
return the perimeter of the circle
e SCircle.radius() — double
return the radius of the circle
e SCircle.s2()
halve the radius by the circle
e SCircle.s3()
shrink the radius by the circle by a factor of 3
e SCircle.s5()
shrink the radius by the circle by a factor of 5
e SCircle.s7()
shrink the radius by the circle by a factor of 7
e SCircle.setRadius(double)
set the radius by the circle to the given number
e SCircle.shrink(double)
decrease the radius of the circle by the given number

248

e SCircle.toString() — String

return a string representation of the circle
e SCircle.x2()

double the radius by the circle
e SCircle.x3()

expand the radius by the circle by a factor of 3
e SCircle.x50)

expand the radius by the circle by a factor of 5
e SCircle.x7()

expand the radius by the circle by a factor of 7

SPolygon Functionality

A simple polygon is modeled in terms of two properties, its degree (number of sides) and its side (side length). There
is just one constructor associated with the SPolygon class, which takes two parameters, the degree and the side of
the polygon.

e new SPolygon(int ,double) — SPolygon
return a simple polygon, the degree of which is given by the integer, and the side of which is given by the real
number

There is functionality for solving simple problems involving polygons and for creating images based on polygons,
including:

e SPolygon .area() — double
return the area of the polygon
e SPolygon.circumscribingCircle() — SCircle
return the circumscribing circle of the polygon
e SPolygon .dec()
decrement the degree of the polygon by 1
e SPolygon .decSide()
decrement the side of the polygon by 1
e SPolygon .degree() — double
return the degree of the polygon
e SPolygon .inc()
increment the degree of the polygon by 1
e SPolygon .incSide()
increment the side of the polygon by 1
e SPolygon .inscribingCircle() — SCircle
return the inscribing circle of the polygon
e SPolygon .perimeter() — double
return the perimeter of the polygon
e SPolygon .setSide(double)
set the side of the polygon to the given number
e SPolygon.side() — double
return the side (length) of the polygon
e SPolygon.toString() — String
return a string representation of the polygon

SRectangle Functionality

249

A simple rectangle is modeled in terms of just two properties, its height and its width. There is just one constructor
associated with the SRectangle class, which takes two parameter, the height and the width of the rectangle.

e new SRectangle(double ,double) — SRectangle
return a new simple rectangle, the height of which is given by the first number, and the width of which is given
by the second number

There is functionality for solving simple problems involving rectangles and creating images based on rectangles,
including:

e SRectangle .area() — double
return the area of the rectangle
e SRectangle.diagonal() — double
return the diagonal of the rectangle
e SRectangle .expand(double ,double)
expand the height of the rectangle by adding the first value to it, and expand the width of the rectangle by
adding the second value to it
e SRectangle .height() — double
return the height of the rectangle
e SRectangle .perimeter () — double
return the perimeter of the rectangle
e SRectangle .shrink(double,double)
shrink the height of the rectangle by subtracting the first value from it, and shrink the width of the rectangle
by subtracting the second value from it
e SRectangle .setHeight (double)
set the height of the rectangle to the given value
e SRectangle .setWidth(double)
set the width of the rectangle to the given value
e SRectangle .toString() — String
return a string representation of the rectangle
e SRectangle .width() — double
return the width of the rectangle

SSquare Functionality

A simple square is modeled in terms of just one property, its side (side length). There is just one constructor asso-
ciated with the SSquare class, which takes the side of the new square as its sole parameter.

e new SSquare(double) — SSquare
return a simple square, the side of which is given by the real number

There is functionality for solving simple problems involving squares and creating images based on squares, including;:

e SSquare.area() —> double
return the area of the square
e SSquare.circumscribingCircle() — SCircle
return the circumscribing circle of the square
e SSquare .diagonal() — double
return the diagonal of the square
e SSquare .expand(double)
increase the radius of the square by the given number

250

SSquare .inscribingCircle() — SCircle
return the inscribing circle of the square
SSquare .perimeter() — double

return the perimeter of the square

SSquare .s2()

halve the radius by the square

SSquare .s3()

shrink the side by the square by a factor of 3
SSquare .s5()

shrink the side by the square by a factor of 5
SSquare .s7()

shrink the side by the square by a factor of 7
SSquare .setSide (double)

set the sides of the square to the given number
SSquare .shrink(double)

decrease the side of the square by the given number

SSquare .side() — double

return the side (length) of the square
SSquare .toString() — String

return a string representation of the square
SSquare .x2()

double the side by the square

SSquare .x3()

expand the side by the square by a factor of 3
SSquare .x5()

expand the side by the square by a factor of 5
SSquare .x7()

expand the side by the square by a factor of 7

251

252

31 Appendix 2: Modular Melody World (MMW)

This appendix presents a partial specification for the Modular Melody World, or MMW, which features musical note
objects and music composer objects, both of which can be used to render melodic sequences of notes. Some, not all,
elements of this microworld’s functionality is presented here.

Interpreting Entries in the Appendices

Each entry in this appendix is made up of terminal symbols and non-terminal symbols. Terminal symbols are
those which require no modification by you — type them exactly as shown. Non-terminal symbols stand for something
of the specified type, and should be replaced with something appropriate to the type specified. For example, in order
to use the changeVolume method, which takes a String argument:

SNote . changeVolume (String)
you must replace SNote and String with instances of the appropriate types.

Methods and constructors which return values have the types of those values shown after the — symbol. For
example, you can see below that the constructor for SComposer returns an instance of that type.

SComposer Functionality

A simple composer may be thought of as an agent that can help you to craft melodic lines. A composer possesses a
note, and knows how do a variety of things with it, the most notable of which is to play modular melodic sequences
with it.

e new SComposer () — SComposer
return a simple composer whose note is instantiated to the default values associated with a simple note, namely:
degree=C-MAJOR, degree=1, duration=1, timbre=PIANO, and volume=MEDIUM

There is simple composer’s functionality includes:

e SComposer .beginScore ()
begin a midi score
e SNote.changeVolume (String)
sets the volume according to the given number, scale ”0” .. ?12000”
e SComposer .cp()
either raise the pitch or lower the pitch one scale degree
e SComposer .doubleTime ()
change the tempo, increasing it by a factor of two (functionally the same as s2, but intended for a conceptually
different use)
e SComposer .halfTime ()
change the tempo, decreasing it by a factor of two (functionally the same as x2, but intended for a conceptually
different use)
e SComposer .loud()
set the volume of the note to 12500
e SComposer .1p()
lower the composer’s note one scale degree

253

SComposer .1p(int)

lower the composer’s note the given number of scale degrees

SComposer .maxx ()

set the volume of the note to 15000

SComposer .medd ()

set the volume of the note to 10000

SComposer .minn ()

set the volume of the note to 2500

SComposer .mms1 ()

a simple modular melodic sequence

SComposer .mms2 ()

a simple modular melodic sequence

SComposer .mms3 ()

a simple modular melodic sequence

SComposer .mms4 ()

a simple modular melodic sequence

SComposer .mms5 ()

a simple modular melodic sequence

SComposer .mms6 ()

a simple modular melodic sequence

SComposer .mms7 ()

a simple modular melodic sequence

SComposer .mms8 ()

a simple modular melodic sequence

SComposer .mms_31_JSB_M1()

a modular melodic sequence consisting of 1 note in 3 beats, the shape of which was lifted from a Bach minuet
SComposer .mms_33_JSB_M2()

a modular melodic sequence consisting of 3 notes in 3 beats, the shape of which was lifted from a Bach minuet
SComposer .mms_33_JSB_M3()

a modular melodic sequence consisting of 3 notes in 3 beats, the shape of which was lifted from a Bach minuet
SComposer .mms_33_JSB_M4()

a modular melodic sequence consisting of 3 notes in 3 beats, the shape of which was lifted from a Bach minuet
SComposer .mms_33_JSB_M5()

a modular melodic sequence consisting of 3 notes in 3 beats, the shape of which was lifted from a Bach minuet
SComposer .mms_34_JSB_M6()

a modular melodic sequence consisting of 4 notes in 3 beats, the shape of which was lifted from a Bach minuet
SComposer .mms_34_JSB_M7 ()

a modular melodic sequence consisting of 4 notes in 3 beats, the shape of which was lifted from a Bach minuet
SComposer .mms_34_JSB_M8()

a modular melodic sequence consisting of 4 notes in 3 beats, the shape of which was lifted from a Bach minuet
SComposer .mms_35_JSB_MI()

a modular melodic sequence consisting of 5 notes in 3 beats, the shape of which was lifted from a Bach minuet
SComposer .mms_35_JSB_M10()

a modular melodic sequence consisting of 5 notes in 3 beats, the shape of which was lifted from a Bach minuet
SComposer .mms_35_JSB_M11()

a modular melodic sequence consisting of 5 notes in 3 beats, the shape of which was lifted from a Bach minuet
SComposer .mms_35_JSB_M12()

a modular melodic sequence consisting of 5 notes in 3 beats, the shape of which was lifted from a Bach minuet
SComposer .mms_35_JSB_M13()

a modular melodic sequence consisting of 5 notes in 3 beats, the shape of which was lifted from a Bach minuet
SComposer .mms_36_JSB_M14 ()

a modular melodic sequence consisting of 6 notes in 3 beats, the shape of which was lifted from a Bach minuet

254

SComposer .mms_36_JSB_M15()

a modular melodic sequence consisting of 6 notes in 3 beats, the shape of which was lifted from a Bach minuet
SComposer .mms_85 HillFlat ()

a modular melodic sequence consisting of 5 notes in 8 beats whose shape iconically resembles its name
SComposer .mms_86_HillStones ()

a modular melodic sequence consisting of 6 notes in 8 beats whose shape iconically resembles its name
SComposer .mms_87 _Hill()

a modular melodic sequence consisting of 7 notes in 8 beats whose shape iconically resembles its name
SComposer .mms_88_Hills ()

a modular melodic sequence consisting of 8 notes in 8 beats whose shape iconically resembles its name
SComposer .mms_86 PrepJump ()

a modular melodic sequence consisting of 6 notes in 8 beats whose shape iconically resembles its name
SComposer .mms_87_Stagger ()

a modular melodic sequence consisting of 7 notes in 8 beats whose shape iconically resembles its name
SComposer .mms_87_StaggerUpDown ()

a modular melodic sequence consisting of 7 notes in 8 beats whose shape iconically resembles its name
SComposer .mms_87_Stroll()

a modular melodic sequence consisting of 7 notes in 8 beats whose shape iconically resembles its name
SComposer .mms_87_StrollUpDown ()

a modular melodic sequence consisting of 7 notes in 8 beats whose shape iconically resembles its name
SComposer .mms_85_StrollDown()

a modular melodic sequence consisting of 5 notes in 8 beats whose shape iconically resembles its name
SComposer .mms_87_ZagZig ()

a modular melodic sequence consisting of 7 notes in 8 beats whose shape iconically resembles its name
SComposer .mms_87_ZigZag ()

a modular melodic sequence consisting of 7 notes in 8 beats whose shape iconically resembles its name
SComposer .play()

play the composer’s note

SComposer .rest ()

rest the composer’s note

SComposer .rp()

raise the composer’s note one scale degree

SComposer .rp(int)

raise the composer’s note the given number of scale degrees

SComposer .saveScore()

assuming that you have begun a score, the midi representation of the score that has been defined by playing
the composer’s note to the point of this method call will be written to the file that you are asked to specify,
provided you specify a valid file name in the proper way (be sure the directory that you are eyeing already
exists)

SComposer .s2()

shrink the composer’s note by a factor of 2

SComposer .s3()

shrink the composer’s note by a factor of 3

SComposer .s5()

shrink the composer’s note by a factor of 5

SComposer .soft ()

set the volume of the note to 7500

SComposer .text ()

play and rest of the note textually (as well as sonically)

SComposer .untext ()

stop the playing and resting the note textually (as well as sonically)

SComposer .x2()

255

expand the composer’s note by a factor of 2
e SComposer .x3()

expand the composer’s note by a factor of 3
e SComposer .x5()

expand the composer’s note by a factor of 5

SNote Functionality

A simple note is modeled in terms of more than a dozen properties, the most salient of which are scale and degree,
which collectively define the pitch of the note, duration which is measured in some number of beats, the timbre of
a note, which pertains to the ”instrument” through which the note may be rendered, and the volume of the note.

e new SNote() — SNote
return a simple note with default values of degree=C-MAJOR, degree=1, duration=1, timbre=PIANO, and
volume=MEDIUM

There is functionality for playing the note, resting the note, changing the degree, duration, volume, timbre, and
other dimensions of the note. This functionality includes:

e SNote .beginScore()
begin a midi score
e SNote.changeVolume (String)
sets the volume according to the given number, scale ”0” .. 712000
e SNote.cp()
either raise the pitch or lower the pitch one scale degree
e SNote.loud()
set the volume of the note to 12500
e SNote.lp()
lower the pitch of the note one scale degree
e SNote.lp(int)
lower the pitch of the note the given number of scale degrees (within reason)
e SNote .maxx ()
set the volume of the note to 15000
e SNote .medd()
set the volume of the note to 10000
e SNote .minn()
set the volume of the note to 2500
e SNote .play()
play the note
e SNote.rest()
rest the note
e SNote.rp()
raise the pitch of the note one scale degree
e SNote.rp(int)
raise the pitch of the note the given number of scale degrees (within reason)
e SNote .saveScore()
assuming that you have begun a score, the midi representation of the score that has been assembled to the
point of this method call will be written to the file that you are asked to specify, provided you specify a valid
file name in the proper way (be sure the directory that you are eyeing already exists)
e SNote.shhh()
set the volume of the note to 5000

256

SNote .s2()

shrink the duration of the note by a factor or 2

SNote .s3()

shrink the duration of the note by a factor or 3

SNote .s5()

shrink the duration of the note by a factor or 5

SNote .soft ()

set the volume of the note to 7500

Shote .text ()

play and rest of the note textually (as well as sonically)
SNote .untext ()

stop the playing and resting the note textually (as well as sonically)
SNote .x2()

expand the duration of the note by a factor or 2

SNote .x3()

expand the duration of the note by a factor or 3

SNote .x5()

expand the duration of the note by a factor or 5

257

258

32 Appendix 3: Graphical Visualizations of the MMW Melodies

This appendix features graphical visualizations for each of the modular melodies sequences available in the MMW
library. Refer to Appendix 2 for the formal reference for each sequence.

The Modular Melody Sequences: mmsl - mms8

mmsl: (C,4)

mms3: (C,1) (C,1) (C,1) (C,1)

mms5: (C,1) / (D,1) \ (C,2)

mms7: / (E,1/2) (E1/2) \ (D,1) \ (C.2)

mms2: (C,2) (C,2)

mmsd: (C,1/2) (C,1/2) (C,1) (C,2)

mms5: (C,1)\ (B,1) / (C.2)

mmss: \ (A,1/2) (A,1/2) / (B,1) / (C.2)

259

The JSBach Figures in MMW

JSB 1: (C.3) JSB 2: (C1)\ (B,1)\ (A1)
JSB 5:
JSB 4:/ (C,1) / (F,1) \ (B.1) [(CHN (FD N (EL)

JSB 8: \ (C,1) \ (B,1/2) \
(C.1/2) (A1)

JSBT: / (C,1) /(G 1/2,1) \
(F,1/2) / (G,1)

260

JSB 3: (C,1)\ (F,1) \ (F,1)

JSB 6: / (C,1)\ (F 1/2,1) \
(E,1/2) / (F.1)

JSB 9: / (C,1)\ (F,1/2) /
(G.1/2) / (A1/2) / (B,1/2)

JSB 10: / (C,1) \ (A,1/2) / (B,1/2) / (C,1/2) /
(D.1/2)

!

JSB 12: / (C.1) \ (A,1/2) / (B,1/2) / (C,1/2) \
(A1/2)

JSB 14: \ (G,1/2) / (A1/2) / (B,1/2) / (C,1/2) /
(D.1/2) / (E,1/2)

261

JSB 11: \ (C,1) / (D,1/2) \ (C,1/2) \ (B,1/2) \
(A1/2)

!

JSB 13: / (C,1/2) \ (B,1/2) \ (A,1/2) / (B,1/2) /
(C.1)

JSB 15: \ (C,1/2) / (G,1/2) \ (B,1/2) / (F,1/2) \
(C1/2) / (E,1/2)

The Locomotion Sequences in MMW

HillFlat: (C,1) / (E,1) \ (D,1)\ (C,1) (C,4)

Hill: (C,1) / (E1)\ (D.1) / (F,1) \ (E1)\ (D.1) \
(C2)

PrepJump: (C,1) / (D.1) / (B.1) / (F.1) \ (C.2) /
(C2)

StaggerUpDown: (C,3/2) / (D,1/2) / (E,3/2) /
(F,1/2) \ (E3/2) \ (D,1/2) \ (C.2)

HillStones: (C,1) / (E,1) \ (D,1) \ (C,1) (R,1)
1

Hills: (C,1) / (E,1)

Stagger: \ (C,3/2) \ (B,1/2) / (C,3/2) / (D,1/2) \
(C3/2)\ (B,1/2) / (C.2)
Stroll: (C,1) \ (B,1) / (C,1) / (D,1) \ (C,1) \ (B,1)
/ (C.2)

262

StrollUpDown: (C,1) / (D,1) / (E,1) / (F,1) \ (E,1)
V(BN (C2) StrollDown: / (G,1) \ (F,1) \ (E,1) \ (D,1) \ (C.4)
ZagZig: (C,1) \ (B,1) / (C,1) \ (B,1) / (C,1) \ ZigZag: (C,1) / (D,1) \ (C,1) / (D,1) \ (C,1) /
(B,1) / (C.2) (D,1)\ (C.2)

263

264

33 Appendix 4: The Stream-Processing Microworld

Java contains the Streams Application Programming Interface (API) which allows programmers to per-
form complex operations on datasets by thinking about the task they aim to perform in terms of small composable
operations. A stream represents a sequence of data elements. Composing operations which create and transform
streams in various ways gives us a stream pipeline. We can think of the streams API as another microworld, where
the objects we’re manipulating are data elements which will originate from lists, and the operations we can perform
are dictated by the streams API.

Motivational Example

Let’s say we have a List called dots which contains several SCircle objects. We would like to create a new List
which contains the inscribing squares for those dots which have a diameter greater than 10. We are used to writing
code which looks like this:

List<SSquare> squares = new ArrayList<>();
for (SCircle dot : dots){
if (dot.diameter() > 10){
SSquare square = dot.inscribingSquare();
squares.add(square) ;

}
We could also do this using a stream pipeline:

List<SSquare> squares = dots.stream()
.filter(c -> c.diameter() > 10)
.map(c -> c.inscribingSquare())
.collect(Collectors.toList());

We begin by creating a stream from our dots List by calling the stream function. We then filter the elements in
the stream, so that only circles with a diameter greater than 10 can continue. We then apply the inscribingSquare
function to each element in the stream by using map. This results in a stream of SSquares which we collect into a
List.

Anonymous Methods

An anonymous method (also known as a lambda) is a method without a name. In the context of stream
pipelines, it’s often useful to create and use methods to perform small operations on the fly, instead of formally
defining them and giving them a name.

Example 1:

s -> s.index0f(",")

Example 2:

x, y) >x>y

265

Stream Pipelines

A stream pipeline consists of a source operation followed by zero or more intermediate operations and one terminal
operation.

e Source operations generate a stream from a collection of data.
e Intermediate operations transform the elements of a stream in some way, and produce another stream.

e Terminal operations produce a non-stream result.

Some Featured Stream Operations

There are many stream operations which are very useful in dealing with collections of data, many more than we
can focus on in this course. We will concentrate our efforts on understanding three significant operations (filter,
map, and reduce), from which you will hopefully learn to appreciate what streams can do. Let’s work by example,
starting with a list of circles called dots.

List<SCircle> dots = List.of(new SCircle(3), new SCircle(5), new SCircle(8), new SCircle(10));

Filter: Filter is an intermediate operation which creates a new stream containing only the elements of its input
which satisfy a predicate. Each input element is checked one at a time against the predicate. This means that the
anonymous method given as an argument to filter should take one argument, and be boolean-valued. The effect
is to filter out those which do not match.

dots.stream()
.filter(c -> c.diameter() > 10)
.forEach(c -> System.out.println("circle: " + c¢));

Output:

circle: <Circle: radius=8.0>
circle: <Circle: radius=10.0>

266

Map: Map is an intermediate operation which creates a new stream containing the result of applying a function to
each element of its input. Each input element is processed one at a time. This means that the anonymous method
given as an argument to map should take one argument, and it must return something for each element (but it doesn’t
have to be of the same type as the input).

dots.stream()
.map(c -> c.inscribingSquare())
.forEach(s -> System.out.println("square: " + s));

Output:

square: <Square: side=4.242640687119285>
square: <Square: side=7.0710678118654755>
square: <Square: side=11.313708498984761>
square: <Square: side=14.142135623730951>

Reduce: Reduce is a terminal operation which reduces a stream of elements to a single value. It accumulates the
result by repeatedly applying a binary function, where the first argument is the result of the previous call to the
function, and the second is the current stream element being processed. Reduce requires that you specify an identity
element, which is the initial value used for the first argument of the binary function, and the result if there are no
elements in the stream.

double totalDiameter = dots.stream()

.map(c -> c.diameter())

.reduce(0.0, (d1, d2) -> d1 + d2);
System.out.println("total diameter: " + totalDiameter);

Output:
total diameter: 52.0

Selections from the

Stream-Processing API

As in your lab manual, each entry in this API listing is made up of terminal symbols and non-terminal
symbols. Terminal symbols are those which require no modification by you — type them exactly as shown. Non-
terminal symbols stand for something of the specified type, and should be replaced with something appropriate to
the type specified. Methods which return values have the types of those values shown after the — symbol.

Source Operations

e List<T>.stream() — Stream<T>
Returns a stream for the elements in the List.
e Arrays.stream(T[]) — Stream<T>
Returns a stream for the elements in the array argument.

Intermediate Operations

267

e Stream<T>.filter(PredicateFunction<T>) —> Stream<T>
Returns a stream consisting of the elements of this stream that match the given predicate.
e Stream<T>.limit(int) — Stream<T>
Returns a stream consisting of the elements of this stream, truncated to be no longer than the number of
elements indicated by the int argument.
e Stream<T>.map(Function<T,R>) —> Stream<R>
Returns a stream consisting of the results of applying the given function to the elements of this stream.

Terminal Operations

e Stream<T>.collect(Collectors.toList()) — List<T>
Returns a List containing all of the elements of the stream.
e Stream<String>.collect(Collectors. joining(String)) — String
Returns a String created by concatenating the stream elements, separated by the specified delimiter.
e Stream<T>.collect(Collectors.counting()) — int
Returns a the number of elements of the stream.
e Stream<T>.forEach(Command<T>)
Performs the command for each element of the stream.
e Stream<T>.reduce(T,BinaryFunction<T>) — T
Performs a reduction on the elements of this stream, using the provided identity value and an associative
accumulation function, and returns the reduced value.

Some Things to do

with Streams!

public class FunWithStreams {

private static Color randomColor() {
int rv = (int) (Math.random() *256) ;
int gv = (int) (Math.random() *256) ;
int bv (int) (Math.random() *256) ;
return new Color(rv,gv,bv);

}

private void paintTheImage() {
SPainter painter = new SPainter("Stream Fun", 900, 1000);

// #1 Create a new ArrayList of SSquares and bind it to a variable called squares.

// #2 Use a for loop to create SSquares with side length 250, 200, 150, 100, and 50,
// adding them each to the squares List.

// #3 Move the painter backward 300, and left 200. Then, for each SSquare in squares,
// set the painter to a random color, paint the square, and move the painter

268

// forward 10 greater than the side length of the square.

// #4 Use streams to create a List of SCircles called circles, which contains
// the inscribing circle for each of the SSquares in squares.

// #5 We didn’t keep track of how far we moved the painter in #3 (maybe we should
// have!), so compute it using streams.

// #6 Move the painter backward the amount you calculated, and 400 to the right.
// Then, for each SCircle in circles set the painter to a random color, paint
// the circle, and move the painter forward 10 greater than the diameter.

// #7 Use streams to print to standard output the diameter of each circle which has
// area greater than 10,000, and radius less than or equal to 100.

269

// Required infrastructure omitted.

|&] Stream Fun — m] X

270

Resources and References

For the most part, the items listed below served to inform my thinking with respect to framing the course and crafting
the text. Some of the items were actually referenced in the text.

CL e

o

10.
11.

12.
13.

14.

15.

16.

17.

18.
19.

Claxton, Guy. Wise-Up: The Challenge of Lifelong Learning. Bloomsbury USA, 2000.

Dewey, John. Experience and Education. Free Press, 1997.

Dreyfus, Hubert. What Computers Can’t Do. HarperCollins, 1978.

Dweck, Carol. Mindset: The New Psychology of Success. Ballantine Books, 2007.

Graci, C. “A Brief Tour of the Learning Sciences Via a Cognitive Toule for Investigating Melodic Phenomena”
in Journal of Educational Technology Systems, 2009-2010.

Hutchins, Edwin. Cognition in the Wild. A Bradford Book, 1995.

Kafai, Y. “Constructionism” in The Cambridge handbook of the learning sciences, edited by R. Sawyer. Cam-
bridge University Press, 2006.

Minsky, Marvin. Society of Mind. Simon & Schuster, 1988.

Langer, Ellen. The Power of Mindful Learning. Da Capo Press, 1998.

Martinez, Michael. Learning and Cognition: The Design of the Mind. Pearson, 2009.

Norman, Donald. “Cognitive artifacts” in Designing interaction: Psychology at the human-computer interface,
edited by J. Carroll, 1991.

Papert, Seymour. Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, 1993.

Pea, Roy. “Practices of distributed intelligence and designs for education” in Distributed Cognitions, edited
by Garviel Salomon, 1997.

Perkins, D. N. “Person-solo: a distributed view of thinking and learning” in Distributed Cognitions, edited by
Garviel Salomon, 1997.

Quintana, C., N. Shin, C. Norris, & E. Soloway. “Learner-centered design” in The Cambridge handbook of the
learning sciences, edited by R. Sawyer. Cambridge University Press, 2006

Salomon, Gavriel. “No distribution without individuals’ cognition: a dynamic interactional view” in Distributed
Cognitions, edited by Garviel Salomon, 1997.

Schwartz, D., & J. Heiser. “Spatial representations and imagery in learning” in The Cambridge handbook of
the learning sciences, edited by R. Sawyer. Cambridge University Press, 2006.

Searle, John. “Brains, Minds, and Programs” in Behavioral and Brain Sciences. 1980.

Winograd, Terry, and Fernando Flores. Understanding Computers and Cognition: A New Foundation for
Design. Addison-Wesley, 1987.

271

272

Color Compendium

Module 2: Computational Microworlds

The Blue Dot — p. 12

Example 1: Simple Melodic Sequence — p. 16

L

The Simple Modular Melodic Sequences — p. 19

mms5 —

mmsé6 —

273

Example 2: A Composer Does A Little Something — p. 20

Module 3: More NPW Problem-Solving

Three Circles — p. 23

RBG Circles
4/"/7‘ »
i \\
L ¥
/ I)‘“‘\\ \
f w'/ ‘\‘\ \w
I { \
‘ll ‘\ / / tl
\ \ /_/ /
\\ ~— /
.\ /‘
""\Hu‘) . d

274

Transitioning from the Blue Dot to Three Circles — p.

The Traffic Light — p. 27

Traffic Light

275

Module 4: Data, Variables, Types, and Expressions

Variable Bindings — p. 33

number — 4

Module 6: Shapes World Problem Solving

Area of Scrap — p. 47

@ @ Area of Scrap of Tin Preblem Picture

276

Area of the Diamond — p. 50

Module 13: Modeling Objects with Classes

A Deck of Cards — p. 96

S0 DDA le el e Al e 6l alie Al
v v as % 4:4
AR AR 2RI 2K 2L 2K NS B BTN PRI 2
Wil iiv ey vl vilv vl ly el
v v aa vy v
EALL AL A AL LA AL A AL A A ga‘A§
Ph il Zia alle el i aliaalty gl
* 3 * & 'I'*'l' -1':'1'
IR AR A 2 A A A2 A
R SR SERY W SR W SERY WP, Zo‘oi ?o‘oi‘
4 4 * 4+ ¢+ 0‘0
BTSRRI AT

277

Lab 2: Hello Painter! Hello Composer!

Task 2: the Blue Dot — p. 278

Task 6: the Target logo — p. 114

oo e Target

278

Lab 4: Expressions and Shapes World Problem Solving

The Blue Diamond — p. 127

o0 e Blue Diamond

Lab 6: Functions and Commands

Lab 6 Preview — p. 139

279

Lab 12: Grapheme to Color Synesthesia

Grapheme to Color Synesthesia Sign — p. 193

GRAPHEME TO COLOR SYNESTESIA

GR HEME TO OLUR SYNESTHESI|

Lab 14: Fun with Fractals

Images Generated by AlgaePainter — p. 215

280

Appendix 4: The Stream-Processing Microworld

The Stream Pipeline — p. 266

Fun With Streams — p. 270

281

282

	Entrance
	Module 1: Algorithms and Algorithmic Thinking
	Module 2: Computational Microworlds
	Module 3: More NPW Problem-Solving
	Module 4: Data, Variables, Types, and Expressions
	Module 5: Superficial Signatures
	Module 6: Shapes World Problem Solving
	Module 7: Control Flow
	Module 8: Methods, Functions, and Commands
	Module 9: String Interlude
	Module 10: Arrays
	Module 11: The for Statement
	Module 12: ArrayList Objects
	Module 13: Modeling Objects with Classes
	Module 14: Algorithms
	Lab 1: Hello World! Hello You!
	Lab 2: Hello Painter! Hello Composer!
	Lab 3: Establishing a CS1 Work Site
	Lab 4: Expressions and Shapes World Problem Solving
	Lab 5: An Interpreter Featuring Loop Forever and Selection
	Lab 6: Functions and Commands
	Lab 7: String Thing
	Lab 8: Array Play
	Lab 9a: Simple List Processing
	Lab 9b: List Processing with Streams
	Lab 10: Establishing and Using Classes
	Lab 11: Modeling Objects with Classes
	Lab 12: Grapheme to Color Synesthesia
	Lab 13: Chromesthesia
	Lab 14: Fun with Fractals
	Exit
	Appendix 1: Nonrepresentational Painting World (NPW)
	Appendix 2: Modular Melody World (MMW)
	Appendix 3: Graphical Visualizations of the MMW Melodies
	Appendix 4: The Stream-Processing Microworld
	Resources and References
	Color Compendium

