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Instead going straight into dealing with specific approaches, issues, and do-

mains of computational cognitive modeling, it would be more appropriate to

first take some time to explore a few general questions that lie at the very core

of cognitive science and computational cognitive modeling.

What is computational cognitive modeling? What exactly can it contribute

to cognitive science? What has it contributed thus far? Where is it going?

Answering such questions may sound overly defensive to the insiders of com-

putational cognitive modeling, and may even seem so to some other cognitive

scientists, but they are very much needed in a volume like this—because they lie

at the very foundation of this field. Many insiders and outsiders alike would like

to take a balanced and rational look at these questions, without indulging in ex-

cessive cheer-leading, which, as one would expect, happens sometimes amongst

computational modeling enthusiasts.

However, given the large number of issues involved and the complexity of

these issues, only a cursory discussion is possible in this introductory chapter.

One may thus view this chapter as a set of pointers to the existing literature,

rather than a full-scale discussion.
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1 What is Computational Cognitive Modeling?

Research in computational cognitive modeling, or simply computational psy-

chology, explores the essence of cognition (broadly defined, including motivation,

emotion, perception, and so on) and various cognitive functionalities through

developing detailed, process-based understanding by specifying corresponding

computational models (in a broad sense) of representations, mechanisms, and

processes. It embodies descriptions of cognition in computer algorithms and

programs, based on computer science (Turing 1950). That is, it imputes com-

putational processes (in a broad sense) onto cognitive functions, and thereby it

produces runnable computational models. Detailed simulations are then con-

ducted based on the computational models (see, e.g., Newell 1990, Rumelhart et

al 1986, Sun 2002). Right from the beginning of the formal establishment of cog-

nitive science around late 1970’s, computational modeling has been a mainstay

of cognitive science. 1

In general, models in cognitive science may be roughly categorized into com-

putational, mathematical, or verbal-conceptual models (see, e.g., Bechtel and

Graham 1998). Computational models (broadly defined) present process details

using algorithmic descriptions. Mathematical models presents relationships be-

tween variables using mathematical equations. Verbal-conceptual models de-

scribe entities, relations, and processes in rather informal natural languages.

Each model, regardless of its genre, might as well be viewed as a theory of

whatever phenomena it purports to capture (as argued extensively before by,

for example, Newell 1990, Sun 2005).

1The roots of cognitive science can, of course, be traced back to much earlier times. For

example, Newell and Simon’s early work in the 60’s and 70’s has been seminal (see, e.g.,

Newell and Simon 1976). The work of Miller, Galanter, and Pribram (1960) has also been

highly influential. See the chapter by Boden in this volume for a more complete historical

perspective (see also Boden 2006).
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Although each of these types of models has its role to play, in this volume,

we will be mainly concerned with computational modeling (in a broad sense),

including those based on computational cognitive architectures. The reason for

this emphasis is that, at least at present, computational modeling (in a broad

sense) appears to be the most promising approach in many respects, and it offers

the flexibility and the expressive power that no other approach can match, as it

provides a variety of modeling techniques and methodologies and supports prac-

tical applications of cognitive theories (Pew and Mavor 1998). In this regard,

note that mathematical models may be viewed as a subset of computational

models, as normally they can readily lead to computational implementations

(although some of them may appear sketchy and lack process details).

Computational models are mostly process based theories. That is, they are

mostly directed at answering the question of how human performance comes

about, by what psychological mechanisms, processes, and knowledge structures

and in what ways exactly. In this regard, note that it is also possible to formulate

theories of the same phenomena through so called “product theories”, which

provide an accurate functional account of the phenomena but do not commit

to a particular psychological mechanism or process (Vicente and Wang 1998).

We may also term product theories blackbox theories or input-output theories.

Product theories do not make predictions about processes (even though they

may constrain processes). Thus, product theories can be evaluated mainly by

product measures. Process theories, in contrast, can be evaluated by using

process measures when they are available and relevant (which are, relatively

speaking, rare), such as eye movement and duration of pause in serial recall;

or by using product measures, such as recall accuracy, recall speed, and so on.

Evaluation of process theories using the latter type of measures can only be

indirect, because process theories have to generate an output given an input

based on the processes postulated by the theories (Vicente and Wang 1998).
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Depending on the amount of process details specified, a computational model

may lie somewhere along the continuum from pure product theories to pure

process theories.

There can be several different senses of “modeling” in this regard, as dis-

cussed in Sun and Ling (1998). The match of a model with human cognition

may be, for example, qualitative (i.e., nonnumerical and relative), or quanti-

tative (i.e., numerical and exact). There may even be looser “matches” based

on abstracting general ideas from observations of human behaviors and then

developing them into computational models. Although different senses of mod-

eling or matching human behaviors have been used, the overall goal remains

the same, which is to understand cognition (human cognition in particular) in

a detailed (process-oriented) way.

This approach of utilizing computational cognitive models for understand-

ing human cognition is relatively new. Although earlier precursors might be

identified, the major developments of computational cognitive modeling have

occurred since the 1960’s. It has since been nurtured by the Annual Confer-

ences of the Cognitive Science Society (which began in the late 1970’s), by the

International Conferences on Cognitive Modeling (which began in the 1990’s),

as well as by the journals of Cognitive Science (which began in the late 1970’s),

Cognitive Systems Research (which began in the 1990’s), and so on.

From Schank and Abelson (1977) to Minsky (1981), a variety of influen-

tial symbolic “cognitive” models were proposed in Artificial Intelligence. They

were usually broad and capable of a significant amount of information process-

ing. However, they were usually not rigorously matched against human data.

Therefore, it was hard to establish cognitive validity of many of these models.

Psychologists have also been proposing computational cognitive models, which

are usually narrower and more specific. They were usually more rigorously

evaluated in relation to human data. An early example is Anderson’s HAM
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(Anderson 1983). Many of such models were inspired by symbolic AI work at

that time (Newell and Simon 1976).

The resurgence of neural network models in the 1980’s brought another type

of model into prominence in this field (see, e.g., Rumelhart et al 1986, Gross-

berg 1982). Instead of symbolic models that rely on a variety of complex data

structures that store highly structured pieces of knowledge (such as Schank’s

scripts or Minsky’s frames), simple, uniform, and often massively parallel nu-

merical computation was used in these neural network models (Rumelhart et

al 1986). Many of these models were meant to be rigorous models of human

cognitive processes, and they were often evaluated in relation to human data in

a quantitative way (but see Massaro 1988).

Hybrid models that combine the strengths of neural networks and symbolic

models emerged in the early 1990’s (see, e.g., Sun and Bookman 1994). Such

models could be used to model a wider variety of cognitive phenomena due to

their more diverse and thus more expressive representations (but see Regier 2003

regarding constraints on models). They have been used to tackle a broad range

of cognitive data, often (though not always) in a rigorous and quantitative way

(see, for example, Sun and Bookman 1994, Sun 1994, Anderson and Lebiere

1998, Sun 2002).

For overviews of some currently existing software, tools, models, and systems

for computational cognitive modeling, the reader may refer to the following

Websites (among others):

http://www.cogsci.rpi.edu/~rsun/arch.html

http://books.nap.edu/openbook.php?isbn=0309060966

http://www.isle.org/symposia/cogarch/archabs.html

as well as the following Websites for specific software, cognitive models, or cog-

nitive architectures (e.g., Soar, ACT-R, and CLARION):
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http://psych.colorado.edu/~oreilly/PDP++/PDP++.html

http://www.cogsci.rpi.edu/~rsun/clarion.html

http://act-r.psy.cmu.edu/

http://sitemaker.umich.edu/soar/home

http://www.eecs.umich.edu/~kieras/epic.html

2 What is Computational Cognitive Modeling

Good for?

There are reasons to believe that the goal of understanding the human mind

strictly from observations of human behavior is ultimately untenable, except

for small and limited task domains. The rise and fall of behaviorism is a case

in point. This point may also be argued on the basis of analogy with physical

sciences (see Sun, Coward, and Zenzen 2005). The key point is that the pro-

cesses and mechanisms of the mind cannot be understood purely on the basis

of behavioral experiments, with tests that inevitably amount to probing only

relatively superficial features of human behavior, which are further obscured by

individual/group differences and contextual factors. It would be extremely hard

to understand the human mind in this way, just like it would be extremely hard

to understand a complex computer system purely on the basis of testing its

behavior, if we do not have any a priori ideas about the nature, the inner work-

ing, and the theoretical underpinnings of that system (Sun 2005). For a simple

example, in any experiment involving the human mind, there is a very large

number of parameters that could influence the results, and these parameters

are either measured or left to chance. Given the large number of parameters,

many have to be left to chance. The selection of which parameters to control

and which to leave to chance is a decision made by the experimenter. This

decision is made on the basis of which parameters the experimenter thinks are
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important. Therefore, clearly, theoretical development need to go hand-in-hand

with experimental tests of human behavior.

Given the complexity of the human mind, and its manifestation in behavioral

flexibility, complex process-based theories, that is, computational models (in the

broad sense of the term), are necessary to explicate the intricate details of the

human mind. Without such complex process-based theories, experimentation

may be blind—leading to the accumulation of a vast amount of data without

any apparent purpose or any apparent hope of arriving at a succinct, precise,

and meaningful understanding. It is true that even pure experimentalists may

often be guided by their intuitive theories in designing experiments and in gen-

erating their hypotheses. So, it is reasonable to say that they are in practice

not completely blind. However, without detailed theories, most of the details of

an intuitive (or verbal-conceptual) theory are left out of consideration, and the

intuitive theory may thus be somehow vacuous, or internally inconsistent, or

otherwise invalid. These problems of an intuitive theory may not be discovered

until a detailed model is developed (Sun, Coward, and Zenzen 2005, Sun 2005).

There are many reasons to believe that the key to understanding cognitive

processes is often in fine details, which only computational modeling can bring

out (Newell 1990, Sun 2005). Computational models provide algorithmic speci-

ficity: detailed, exactly specified, and carefully thought-out steps, arranged in

precise and yet flexible sequences. Therefore, they provide both conceptual clar-

ity and precision. As related by Hintzman (1990), “The common strategy of

trying to reason backward from behavior to underlying processes (analysis) has

drawbacks that become painfully apparent to those who work with simulation

models (synthesis). To have one’s hunches about how a simple combination of

processes will behave repeatedly dashed by one’s own computer program is a

humbling experience that no experimental psychologist should miss” (p.111).

One viewpoint concerning the theoretical status of computational modeling
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and simulation is that they, including those based on cognitive architectures,

should not be taken as theory. A simulation/model is a generator of phenomena

and data. Thus it is a theory-building tool. Hintzman (1990) gave a positive as-

sessment of the role of simulation/model in theory building: “a simple working

system that displays some properties of human memory may suggest other prop-

erties that no one ever thought of testing for, may offer novel explanations for

known phenomena, and may provide insight into which modifications that next

generation of models should include” (p.111). That is, computational models

are useful media for thought experiments and hypothesis generation. In particu-

lar, one may use simulations for exploring various possibilities regarding details

of a cognitive process. Thus, a simulation/model may serve as a theory-building

tool for developing future theories. A related view is that computational mod-

eling and simulation are suitable for facilitating the precise instantiation of a

pre-existing verbal-conceptual theory (e.g., through exploring various possible

details in instantiating the theory) and consequently the careful evaluation of

the theory against data. A radically different position (e.g., Newell 1990, Sun

2005) is that every simulation/model provides a theory. It is not the case that

a simulation/model is limited to being built on top of an existing theory, being

applied for the sake of generating data, being applied for the sake of validating

an existing theory, or being applied for the sake of building a future theory.

To the contrary, according to this view, a simulation/model is a theory by it-

self. In philosophy of science, constructive empiricism (van Fraasen 1980) may

make a sensible philosophical foundation for computational cognitive modeling,

consistent with the view of models as theories (Sun 2005).

Computational models may be necessary for understanding a system as com-

plex and as diverse as the human mind. Pure mathematics, developed to de-

scribe the physical universe, may not be sufficient for understanding a sys-

tem as different and as complex as the human mind (cf. Luce 1995, Coombs
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et al 1970). Compared with scientific theories developed in other disciplines

(e.g., in physics), computational cognitive modeling may be mathematically

less elegant—but the point is that the human mind itself is likely to be less

mathematically elegant compared with the physical universe (see, e.g., Minsky

1985) and therefore an alternative form of theorizing is called for, a form that

is more complex, more diverse, and more algorithmic in nature. Computational

cognitive models provide a viable way of specifying complex and detailed theo-

ries of cognition. Consequently, they may provide detailed interpretations and

insights that no other experimental or theoretical approach can provide.

In particular, a cognitive architecture denotes a comprehensive, domain-

generic computational cognitive model, capturing the essential structures, mech-

anisms, and processes of cognition. It is used for a broad, multiple-level,

multiple-domain analysis of cognition and behavior (Sun 2004, Sun, Coward,

and Zenzen 2005, Sun 2005). It deals with componential processes of cognition

in a structurally and mechanistically well defined way (Sun 2004). Its function

is to provide an essential framework to facilitate more detailed modeling and

understanding of various components and processes of the mind. A cognitive

architecture is useful and important because it provides a comprehensive initial

framework for further exploration of many different domains and many differ-

ent cognitive functionalities. The initial assumptions may be based on either

available scientific data (e.g., psychological or biological data), philosophical

thoughts and arguments, or ad hoc working hypotheses (including computa-

tionally inspired such hypotheses). A cognitive architecture helps to narrow

down possibilities, provides scaffolding structures, and embodies fundamental

theoretical postulates. Note that the value of cognitive architectures has been ar-

gued many times before; see, for example, Newell (1990), Anderson and Lebiere

(1998), Sun (2002), Anderson and Lebiere (2003), Sun (2004), Sun, Coward,
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and Zenzen (2005), Sun (2005), and so on. 2

As we all know, science in general often progresses from understanding to

prediction and then to prescription (or control). Computational cognitive mod-

eling potentially may contribute to all of these three phases of science. For

instance, through process-based simulation, computational modeling may re-

veal dynamic aspects of cognition, which may not be revealed otherwise, and

allows a detailed look at constituting elements and their interactions on the fly

during performance. In turn, such understanding may lead to hypotheses con-

cerning hitherto undiscovered or unknown aspects of cognition and may lead

to predictions regarding cognition. The ability to make reasonably accurate

predictions about cognition can further allow prescriptions or control, for ex-

ample, by choosing appropriate environmental conditions for certain tasks, or

by choosing appropriate mental types for certain tasks and/or environmental

conditions.

In sum, the utility and the value of computational cognitive modeling (in-

cluding cognitive architectures) can be argued in many different ways (see Newell

1990, Sun 2002, Anderson and Lebiere 2003, and so on). These models in their

totality are clearly more than just simulation tools or programming languages

of some sorts. They are theoretically pertinent, because they represent theo-

ries in a unique and, I believe, indispensable way. Cognitive architectures, for

example, are broad theories of cognition in fact.

2For information about different existing cognitive architectures, see, for example,

http://www.cogsci.rpi.edu/∼rsun/arch.html. See also Sun (2006) for information on three

major cognitive architectures.
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3 Multiple Levels of Computational Cognitive

Modeling

A strategic decision that one has to make with respect to cognitive science is the

level(s) of analysis (i.e., level(s) of abstraction) at which one models cognitive

agents. Computational cognitive modeling can vary in terms of level of process

details and granularity of input and output, and thus may be carried out at

multiple levels. Let us look into this issue of multiple levels of computational

cognitive modeling, drawing upon the work of Sun, Coward, and Zenzen (2005).

We note that traditional theories of multi-level analysis holds that there are

various levels each of which involves a different amount of computational details

(e.g., Marr 1982). In Marr’s theory, first, there is the computational theory level,

in which one is supposed to determine proper computation to be performed, its

goals, and the logic of the strategies by which the computation is to be carried

out. Second, there is the representation and algorithm level, in which one is sup-

posed to be concerned with carrying out the computational theory determined

at the first level and, in particular, the representation for the input and the

output and the algorithm for the transformation from the input to the output.

The third level is the hardware implementation level, in which one is supposed

to physically realize the representation and algorithms determined at the second

level. According to Marr, these three levels are only loosely coupled; that is,

they are relatively independent. Thus there are usually a wide array of choices

at each level, independent of the other two. Some phenomena may be explained

at only one or two levels. Marr (1982) emphasized the “critical” importance of

formulation at the level of computational theory, that is, the level at which the

goals and purposes of a cognitive process are specified and internal and external

constraints that make the process possible are worked out and related to each

other and to the goals of computation. His reason was that the nature of compu-
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level object of analysis

1 computation

2 algorithms

3 implementations

Figure 1: A traditional hierarchy of levels (Marr 1982).

level object of analysis type of analysis computational model

1 inter-agent processes social/cultural collections of agents

2 agents psychological individual agents

3 intra-agent processes componential modular construction of agents

4 substrates physiological biological realization of modules

Figure 2: Another hierarchy of four levels (Sun, Coward, and Zenzen 2005).

tation depended more on the computational problems to be solved than on the

way the solutions were to be implemented. In his own words, “an algorithm is

likely to be understood more readily by understanding the nature of the problem

being solved than by examining the mechanism (and the hardware) in which it

is embodied.” Thus, he preferred a top-down approach—from a more abstract

level to a more detailed level. See Figure 1 for the three levels. It often appears

that Marr’s theory centered too much on the relatively minor differences in

computational abstractions (e.g., algorithms, programs, and implementations;

see Sun, Coward, and Zenzen 2005, Dayan 2003, Dawson 2002). It also ap-

pears that his theory represented an over-simplification of biological reality (for

example, ignoring the species-specific or motivation-relevant representations of

the environment and the close relationship between low-level implementations

and high-level computation), and as a result represented an over-rationalization

of cognition.

Another variant is Newell and Simon’s three-level theory. Newell and Simon
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(1976) proposed the following three levels: (1) The knowledge level, in which

why cognitive agents do certain things is explained by appealing to their goals

and their knowledge, and by showing rational connections between them. (2)

The symbol level, in which the knowledge and goals are encoded by symbolic

structures, and the manipulation of these structures implements their connec-

tions. (3) The physical level, in which the symbol structures and their manipula-

tions are realized in some physical form. Sometimes this three-level organization

was referred to as “the classical cognitive architecture” (Newell 1990). The point

being emphasized here was very close to Marr’s view: What is important is the

analysis at the knowledge level and then at the symbol level, that is, identifying

the task and designing symbol structures and symbol manipulation procedures

suitable for it. Once this analysis (at these two levels) is worked out, the analysis

can be implemented in any available physical means.

In contrast, according to Sun, Coward, and Zenzen (2005), the differences

(borrowed from computer programming) amongst “computation”, algorithms,

programs, and hardware realizations, and their variations, as have been the

focus in Marr’s (1982) and Newell and Simon’s (1976) level theories, are rel-

atively insignificant. This is because, first of all, the differences among them

are usually small, fuzzy, and subtle, compared with the differences among the

processes to be modeled (that is, the differences among the sociological vs. the

psychological vs. the intra-agent, etc.). Second, these different computational

constructs are in reality closely tangled (especially in the biological world): One

cannot specify algorithms without at least some considerations of possible im-

plementations, and what is to be considered “computation” (i.e., what can be

computed) relies on algorithms, especially the notion of algorithmic complexity,

and so on. Therefore, one often has to consider computation, algorithms, and

implementation together somehow (especially in relation to cognition). Third,

according to Sun, Coward, and Zenzen (2005), the separation of these computa-
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tional details failed to produce any major useful insight in relation to cognition,

but theoretical baggage. A re-orientation toward a systematic examination of

phenomena, instead of tools one uses for modeling them, is thus a step in the

right direction.

The viewpoint of Sun, Coward, and Zenzen (2005) focused attention on the

very phenomena to be studied, on their scopes, scales, degrees of abstractness,

and so on. Thus, the differences among levels of analysis can be roughly cast as

the differences among disciplines, from the most macroscopic to the most micro-

scopic. These levels of analysis include: the sociological level, the psychological

level, the componential level, and the physiological level. See Figure 2 for these

levels. Different levels of modeling may be established in exact correspondence

with different levels of analysis.

First of all, there is the sociological level, which includes collective behavior

of agents (Durkheim 1895), inter-agent processes (Vygotsky 1986), sociocultural

processes, as well as interaction between agents and their (physical and socio-

cultural) environments. Only recently, the field of cognitive science has come

to grip with the fact that cognition is, at least in part, a social/cultural process

(Lave 1988, Vygotsky 1986, Sun 2006). To ignore the sociocultural process is

to ignore a major underlying determinant of individual cognition. The lack of

understanding of sociological processes may result in the lack of understanding

of some major structures and constraints in cognition. Thus, any understanding

of individual cognition can only be partial and incomplete when sociocultural

processes are ignored or downplayed. 3

The next level is the psychological level, which covers individual behaviors,

beliefs, knowledge, concepts, and skills (as well as motivation, emotion, percep-

tion, and so on). In relation to the sociological level, one can investigate the

3See Sun (2001, 2006) for a more detailed argument of the relevance of sociocultural pro-

cesses to cognition and vice versa.
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relationship of individual beliefs, knowledge, concepts, and skills with those of

the society and the culture, and the processes of change of these beliefs, knowl-

edge, concepts, and skills, independent of or in relation to those of the society

and the culture. At this level, one can examine human behavioral data, and

compare them with models and with insights from the sociological level and

further details from the lower levels.

The third level is the componential level. It is important to note that in

computational cognitive modeling, the computational process of an agent is

mostly specified in terms of components of the agent, i.e., in terms of intra-

agent processes. Thus, at this level, one may specify a cognitive architecture

and components therein. In the process of analysis, one specifies essential com-

putational processes of each component as well as essential connections among

various components. Thus, analysis of capacity (functional analysis) and anal-

ysis of components (structural analysis) become one and the same at this level.

However, at this level, unlike at the psychological level, work is more along

the line of structural analysis than functional analysis (while the psychological

level is mostly concerned with functional analysis). At this level, one models

cognitive agents in terms of components, with the theoretical language of a

particular paradigm, for example, symbolic computation or connectionist net-

works, or their combinations (Sun and Bookman 1994). That is, one imputes

a computational process onto a cognitive function. Ideas and data from the

psychological level—the psychological constraints from above, which bear on

the division of components and possible implementations of components, are

among the most important considerations. This level may also incorporate

biological/physiological observations regarding plausible divisions and their im-

plementations; that is, it can incorporate ideas from the next level down—the

physiological level, which offers the biological constraints. This level results in

cognitive mechanisms, although they are usually computational and thus ab-
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stract, compared with physiological-level specifications of details.

Although this level is essentially in terms of intra-agent processes, computa-

tional models developed therein may also be used to model processes at higher

levels, including the interaction at a sociological level where multiple individuals

are involved. This can be accomplished, for example, by examining interactions

of multiple copies of individual agents (Sun 2006).

The lowest level of analysis is the physiological level, that is, the biological

substrate, or biological implementation, of computation (Dayan 2003). This

level is the focus of a range of disciplines including physiology, biology, com-

putational neuroscience, cognitive neuroscience, and so on. Although biological

substrates are not among our major concerns here, they may nevertheless pro-

vide valuable input as to what kind of computation is likely employed and what

a plausible architecture (at a higher level) should be like. The main utility of

this level is to facilitate analysis at higher levels, that is, to use low-level in-

formation to narrow down, at higher levels, choices in selecting computational

architectures and choices in implementing componential computation.

Although computational cognitive modeling is often limited to within a par-

ticular level at a time (inter-agent, agent, intra-agent, or substrate), this need

not always be the case: Cross-level analysis and modeling could be intellectu-

ally highly enlightening, and might be essential to the progress of computational

cognitive modeling in the future (Sun, Coward, and Zenzen 2005, Dayan 2003).

These levels described above do interact with each other (e.g., constraining

each other) and may not be easily isolated and tackled alone. Moreover, their

respective territories are often intermingled, without clear-cut boundaries.

For instance, the cross-level link between the psychological and the neuro-

physiological level has been strongly emphasized in recent years (in the form

of cognitive neuroscience; see, e.g., LeDoux 1992, Damasio 1994, Milner and

Goodale 1995). For example, Wilson et al. (2000) presented a model of human
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subjects perceiving the orientation of the head of another person. They ac-

counted for the empirical findings from psychological experiments with a model

based on a population code of neurons in the visual cortex, and thus the un-

derlying neural structures were used to explain a psychological phenomenon at

a higher level. For another instance of cross-level research, the psychological

and the social level may also be crossed in many ways, in order to generate new

insights into social phenomena on the basis of cognitive processes (e.g., Boyer

and Ramble 2001, Sun 2006) and, conversely, to generate insights into cognitive

phenomena on the basis of sociocultural processes (e.g., Hutchins 1995, Nisbett

et al 2001). In all of these cases, the ability to shift appropriately between

levels when needed is a critical part of the work.

Beyond cross-level analysis, there may be “mixed-level” analysis (Sun, Cow-

ard, and Zenzen 2005). The idea of mixed-level analysis may be illustrated

by the research at the boundaries of quantum mechanics. In deriving theo-

ries, physicists often start working in a purely classical language that ignores

quantum probabilities, wave functions, and so forth, and subsequently overlay

quantum concepts upon a classical framework (Greene 1999, Coward and Sun

2004). The very same idea applies to mixing cognitive modeling and social

simulation as well. One may start with purely social descriptions but then sub-

stitute cognitive principles and cognitive process details for simpler descriptions

of agents (e.g., Sun and Naveh 2004). Relatedly, there has also been strong

interplay between psychological models and neurophysiological models—for ex-

ample, going from psychological descriptions to neurobiological details.

Note that Rasmussen (1986) proposed something similar to the view de-

scribed above on levels. His hierarchy was a more general framework but had

a number of constraining properties (see also Vicente and Wang 1998): (1) All

levels deal with the same system, with each level providing a different descrip-

tion of the system; (2) each level has its own terms, concepts, and principles; (3)
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the selection of levels may be dependent on the observer’s purpose, knowledge,

and interest; (4) the description at any level may serve as constraints on the

operation of lower levels, whereas changes at a higher level may be specified

by the effects of the lower levels; (5) by moving up the hierarchy, one under-

stands more the significance of some process details with regard to the purpose

of the system; by moving down the hierarchy, one understands more how the

system functions in terms of the process details; (6) there is also a means-ends

relationship between levels in a hierarchy.

Note also Ohlsson and Jewett’s (1997) and Langley’s (1999) idea of ab-

stract cognitive model, which is relevant here as well. To guard against over-

interpretation of empirical evidence and to avoid the usually large gaps between

evidence and full-blown computational models, Ohlsson and Jewett (1997) pro-

posed “abstract computational models”, which were relatively abstract models

that were designed to test a particular (high level) hypothesis without taking a

stand on all the (lower level) details of a cognitive architecture. Similar ideas

were also expressed by Langley (1999), who argued that the source of explana-

tory power of a model often lay at a higher level of abstraction.

In sum, there have been various proposals regarding multiple levels of compu-

tational cognitive modeling. Although details vary, the very notion of multiple

levels of cognitive modeling appears to be useful. It can be expected to be of

importance for the further development of this field.

4 Success Stories of the Past

There have been quite a few success stories of computational cognitive modeling,

in a practical or a theoretical sense. They include, among many others:

• the various models of developmental psychology, including the connec-

tionist models of verb past-tense learning and the controversies stemming
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from such models,

• the tutoring systems based on the ACT-R cognitive architecture,

• the model of implicit and explicit learning based on the CLARION cog-

nitive architecture.

For instance, computational models of child development have been success-

ful in accounting for, and in explaining, fine-grained developmental processes.

In terms of widespread impact and associated theoretical interests and contro-

versies, computational models of verb past-tense learning may be ranked as

being at the top of all computational cognitive models (see, e.g., Rumelhart et

al 1986).

Theoretically, successful development models have clarified a number of ma-

jor issues. In developmental psychology, there is the dichotomy contrasting

knowledge that the child acquires through interacting with the environment

(nurture) with knowledge of phylogenic origin (nature). It was argued that

mechanisms of gene expression and brain development did not allow for the de-

tailed specification of neural networks in the brain as required by the nativist

position. It has been argued that a more plausible role for innate knowledge is at

the level of architectures and timing of development (see the chapter by Shultz

and Sirois in this volume). In this regard, neural network models have provided

new ways of thinking about innateness. That is, instead of asking whether or

not something is innate, one should ask how evolution constrains the emergence

of a brain function during individual development. This kind of theorizing has

benefited from the use of neural networks (as detailed in the chapter by Shultz

and Sirois).

Developmental psychologists have also been debating the distinction between

learning and development. A static neural network can only learn what is within

its representational power. Thus, when static neural networks are used, it is as-
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sumed that the ultimate brain network topology has already been developed

(even if initial weights are random). However, this assumption implies repre-

sentational innateness, which has been argued to be implausible. An alternative

is to use neural network models that form their network topology as a result

of their experience. Using constructive learning models also resolves the “para-

dox of development”: It was argued that if learning was done by proposing

and testing hypotheses, it was not possible to learn anything that could not al-

ready be represented. This argument becomes irrelevant in light of constructive

learning models where learning mechanisms that construct representations are

separate from the representation of domain-specific knowledge. A constructive

model builds representational power that it did not previously possess. Thus,

computational modeling suggests that development is functionally distinct from

learning (as argued in the chapter by Shultz and Sirois).

Similarly, as another example, an interpretation of a broad range of skill

learning data (including those from the implicit learning literature) was pro-

posed based on the CLARION cognitive architecture (see Sun, Slusarz, and

Terry 2005 and Sun 2002; see also the chapter by Taatgen and Anderson in this

volume concerning cognitive architectures). At a theoretical level, this work

explicates the interaction between implicit and explicit cognitive processes in

skill learning, in contrast to the tendency of studying each type in isolation.

It highlights the interaction between the two types of processes and its various

effects on learning (including the so called synergy effects; see Sun 2002). At an

empirical level, a model centered on such an interaction constructed based on

CLARION was used to account for data in a variety of task domains: process

control tasks, artificial grammar learning tasks, serial reaction time tasks, as

well as some much more complex task domains (such as Tower of Hanoi and

Minefield Navigation). The model was able to explain data in these task do-

mains, shedding light on some apparently contradictory findings (including some
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findings once considered as casting doubt on the theoretical status of implicit

learning). Based on the data and the match between the CLARION architecture

and the data, this work argues for an integrated theory/model of skill learning

that takes into account both implicit and explicit processes, as the data match

pointed to the usefulness of incorporating both explicit and implicit processes in

theorizing about cognition (Sun, Slusarz, and Terry 2005). Moreover, it argues

for a bottom-up approach (first learning implicit knowledge and then explicit

knowledge on its basis) in an integrated theory/model of skill learning, which

was radically different from the then existing models (see Sun 2002; see also

the chapter on skill learning by Ohlsson in this volume). So, in this case, the

application of the computational cognitive architecture CLARION to the skill

learning data helped to achieve a level of theoretical integration and explana-

tion beyond the previous theorizing (Sun, Slusarz, and Terry 2005; Sun 2002).

For yet another example of using cognitive architectures to provide theoretical

interpretation and integration, see Meyer and Kieras (1997).

As a final example, a number of interesting tutoring systems have been

constructed on the basis of the ACT-R cognitive architecture (Koedinger et

al 1997; see also the chapter by Taatgen and Anderson in this volume). These

tutoring systems were based on the analysis of the task units that were necessary

to achieve competence in a number of domains of mathematics and computer

programming. These units were represented as production rules. A typical

course involves on the order of 500 production rules. On the assumption that

learning in these domains involves the acquisition of such production rules, it is

possible to diagnose whether students have acquired such production rules and

provide instruction to remedy any difficulties they might have with specific rules.

This led to the design of tutoring systems that ran production rule models in

parallel with a student and attempted to interpret the student behavior in terms

of these rules. Such systems tried to find some sequence of production rules
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that produced the behavior exhibited by a student. The model-tracing process

allowed the interpretation of student behavior, and in turn the interpretation

controlled the tutorial interactions. Thus, such tutoring systems are predicated

on the validity of the cognitive model and the validity of the attributions that

the model-tracing process makes about student learning. There have been a few

assessments that established to some extent the effectiveness of these systems.

The tutoring systems have been used to deliver instruction to more than 100,000

students thus far. They demonstrated the practical usefulness of computational

cognitive modeling. Other examples of practical applications of computational

cognitive modeling may be found in Pew and Mavor (1998), and many in the

area of human-computer interaction.

5 Directions for the Future

Many accounts of the history and the current state of the art of computational

cognitive modeling in different areas will be provided by the subsequent chapters

in this volume. At this point, however, it may be worthwhile to speculate a little

about future developments of computational cognitive modeling.

First of all, some have claimed that grand scientific theorizing has become a

thing of the past. What remains to be done is filling in details and refining some

minor points. Fortunately, many cognitive scientists believe otherwise. Indeed,

many of them are pursuing integrative principles that attempt to explain data

in multiple domains and in multiple functionalities (e.g., Anderson and Lebiere

1998, Sun 2002). In cognitive science, as in many other scientific fields, signifi-

cant advances may be made through discovering (hypothesizing and confirming)

deep-level principles that unify superficial explanations across multiple domains,

in a way somewhat analogous to Einstein’s theory that unified electromagnetic

and gravitational forces, or String Theory that aims to provide even further
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unifications (see Green 1999). Such theories are what cognitive science needs,

currently and in the foreseeable future.

Integrative computational cognitive modeling may serve in the future as an

antidote to the increasing specialization of scientific research. In particular,

cognitive architectures are clearly going against the trend of increasing special-

ization, and thus constitute an especially effective tool in this regard. Cogni-

tive scientists are currently actively pursuing such approaches and, hopefully,

will be increasingly doing so in the future. In many ways, the trend of over-

specialization is harmful, and thus the reversal of this trend by the means of

computational cognitive modeling is a logical (and necessary) next step toward

advancing cognitive science (Sun et al 1999).

Second, related to the point above, while the importance of being able to re-

produce the nuances of empirical data from specific psychological experiments is

evident, broad functionality is also important (Newell 1990). The human mind

needs to deal with the full cycle that includes all of the followings: transducing

signals, processing them, storing them, representing them, manipulating them,

and generating motor actions based on them. In computational cognitive mod-

eling, there is clearly a need to develop generic models of cognition that are

capable of a wide range of cognitive functionalities, to avoid the myopia often

resulting from narrowly-scoped research (e.g., in psychology). In particular, cog-

nitive architectures may incorporate all of the following cognitive functionalities:

perception, categorization and concepts, memory, decision making, reasoning,

planning, problem solving, motor control, learning, metacognition, motivation,

emotion, language and communication, among others. In the past, this issue

often did not get the attention it deserved in cognitive science (Newell 1990),

and it remains a major challenge for cognitive science.

However, it should be clearly recognized that over-generality, beyond what

is minimally necessary, is always a danger in computational cognitive modeling,
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and in developing cognitive architectures (Sun 2007). It is highly desirable to

come up with a well constrained cognitive model with as few parameters as

possible while accounting for as large a variety of empirical observations and

phenomena as possible (Regier 2003). This may be attempted by adopting a

broad perspective — philosophical, psychological, biological, as well as compu-

tational, and by adopting a multi-level framework going from sociological, to

psychological, to componential, and to physiological levels, as discussed before

(and as argued in more detail in Sun, Coward, and Zenzen 2005). Although

some techniques have been developed to accomplish this, more work is needed

(see, e.g., Sun and Ling 1998, Regier 2003, Sun 2007).

Third, in integrative computational cognitive modeling, especially in devel-

oping cognitive architectures with a broad range of functionalities, it is im-

portant to keep in mind a broad set of desiderata. For example, in Anderson

and Lebiere (2003), a set of desiderata proposed by Newell (1990) was used

to evaluate a cognitive architecture versus conventional connectionist models.

These desiderata include flexible behavior, real-time performance, adaptive be-

havior, vast knowledge base, dynamic behavior, knowledge integration, natural

language, learning, development, evolution, and brain realization (see Newell

1990 for detailed explanations). In Sun (2004), another, broader set of desider-

ata was proposed and used to evaluate a larger set of cognitive architectures.

These desiderata include ecological realism, bio-evolutionary realism, cognitive

realism, and many others (see Sun 2004 for details). The advantages of com-

ing up with and applying these sets of desiderata in computational cognitive

modeling include (1) avoiding overly narrow models and (2) avoiding missing

important functionalities. We can reasonably expect that this issue will provide

impetus for further research in the field of computational cognitive modeling in

the future.

Fourth, the validation of process details of computational cognitive models
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has been a difficult, but extremely important, issue (Pew and Mavor 1998).

This is especially true for cognitive architectures, which often involve a great

deal of intricate details that are almost impossible to disentangle. This issue

needs to be better addressed in the future. There have been too many instances

in the past that research communities rushed into some particular model or

some particular approach toward modeling cognition and human intelligence,

without knowing exactly how much of the approach or the model was veridical or

even useful. Theoretical (including mathematical) analysis often lagged behind.

Thus, often without sufficient effort at validation and theoretical analysis, claims

were boldly made about the promise of a certain model or a certain approach.

Unfortunately, we have seen quite a few setbacks in the history of cognitive

science as a result of this cavalier attitude toward the science of cognition. As

in any other scientific field, painstakingly detailed work needs to be carried out

in cognitive science, before sweeping claims can be made. Not only is empirical

validation necessary, theoretical analysis, including detailed mathematical and

computational analysis, is also necessary in order to better understand models

and modeling approaches, before committing a large amount of resource (cf.

Roberts and Pashler 2000). In particular, sources of explanatory power need to

be identified and analyzed (as called for in Sun and Ling 1998). The issue of

validation should be an important factor in directing future research in the field

of computational cognitive modeling.

Related to that, the “design” space of computational cognitive models needs

to be more fully explored (as pointed out in Sun and Ling 1998 and Sloman

and Chrisley 2005). While we explore the behavioral space, in the sense of

identifying the range and variations of human behavior, we also need to explore

the design space (that is, all the possibilities for constructing computational

models) that maps onto the behavioral space, so that we may gain a better

understanding of the possibilities and the limitations of modeling methodologies,
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and thereby open up new avenues for better capturing cognitive processes. This

is especially important for cognitive architectures, which are complex and in

which many design decisions need to be made, often without the benefit of a

clear understanding of their full implications in computational or behavioral

terms. More systematic exploration of the design space of cognitive models is

thus necessary. Future research in this field should increasingly address this

issue (Sloman and Chrisley 2005).

Computational cognitive models may find both finer and broader applica-

tions, that is, both at lower levels and at higher levels, in the future. For

example, some cognitive models found applications in large-scale simulations at

a social and organizational level. For another example, some other cognitive

models found applications in interpreting not only psychological data but also

neuroimaging data (at a biological/physiological level). A review commissioned

by the National Research Council found that computational cognitive modeling

had progressed to a degree that had made them useful in a number of application

domains (Pew and Mavor 1998). Another review (Ritter, Shadbolt, Elliman,

Young, Gobet, and Baxter 2003) pointed to similar conclusions. Both reviews

provided interesting examples of applications of computational cognitive mod-

eling. Inevitably, this issue will provide impetus for future research, not only in

applied areas of computational cognitive modeling, but also in theoretical areas

of computational cognitive modeling.

In particular, cognitive modeling may be profitably applied to social simu-

lation. An important recent development in the social sciences has been agent-

based social simulation. 4 So far, however, the two fields of social simulation

and cognitive modeling have been developed largely separately from each other

(with some exceptions). Most of the work in social simulation assumed rudimen-

4This approach consists of instantiating a population of agents, allowing the agents to run,

and observing the interactions among them.
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tary cognition on the part of the agents. As has been argued before (e.g., Sun

and Naveh 2004; Sun 2001, 2006; Zerubavel 1997), social processes ultimately

rest on the decisions of individuals, and thus understanding the mechanisms of

individual cognition can lead to better theories of social processes. At the

same time, by integrating social simulation and cognitive modeling, we may ar-

rive at a better understanding of individual cognition. By modeling cognitive

agents in a social context (as in cognitive social simulation), we may learn more

about how sociocultural processes influence individual cognition. (See the later

chapter by Ron Sun in this volume regarding cognitive social simulation.)

Cross-level and mixed-level work integrating the psychological and the neuro-

physiological level, as discussed before, will certainly be an important direction

for future research. Increasingly, researchers are exploring constraints from both

psychological and neurobiological data. In so doing, the hope is that more real-

istic and better constrained computational cognitive models may be developed.

(See, for example, the chapter by Norman et al in this volume for some such

models.)

Finally, will this field eventually become a full fledged discipline—computational

psychology, just like computational neuroscience or computational physics? This

is an interesting but difficult issue. There are a number of open questions in

this regard. For example, how independent can this field be from closely allied

fields such as experimental psychology (and cognitive psychology in particular)?

What will the relationship be between data generation and modeling? How use-

ful or illuminating can this field be in shedding new light on cognition per se (as

opposed to leading up to building intelligent systems)? And so on and so forth.

These are the questions that will determine the future status of this field. So

far, the answers to these questions are by no means clear-cut. They will have

to be worked out in the future through the collective effort of the researchers in

this field.
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6 About This Book

The present volume, the Cambridge Handbook of Computational Cognitive Mod-

eling, is part of the Cambridge Handbook in Psychology series. This volume is

aimed to be a definitive reference source for the growing field of computational

cognitive modeling. Written by the leading experts in various areas of this field,

it is meant to combine breadth of coverage with depth of critical details.

This volume aims to appeal to researchers and advanced students in the com-

putational cognitive modeling community, as well as to researchers and advanced

students in cognitive science (in general), philosophy, experimental psychology,

linguistics, cognitive anthropology, neuroscience, artificial intelligence, and so

on. For example, it could serve well as a textbook for courses in social, cog-

nitive, and behavioral sciences programs. In addition, this volume might also

be useful to social sciences researchers, education researchers, intelligent system

engineers, psychology and education software developers, and so on.

Although this field draws on many humanity and social sciences disciplines

and on computer science, the core of the approach is based on psychology, and

this is a constant focus in this volume. At the same time, this volume is also dis-

tinguished by its incorporation of one contemporary theme in scientific research:

how technology (namely computing technology) affects our understanding of the

subject matter—cognition and its associated issues.

This volume contains 26 chapters, organized into 4 parts. The first part (con-

taining the present chapter) provides a general introduction to the field of com-

putational cognitive modeling. The second part, Cognitive Modeling Paradigms,

introduces the reader to broadly influential approaches in cognitive modeling.

These chapters have been written by some of those influential scholars who

helped to define the field. The third part, Computational Modeling of Vari-

ous Cognitive Functionalities and Domains, describes a range of computational
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modeling efforts that researchers in this field have undertaken regarding major

cognitive functionalities and domains. The interdisciplinary combination of cog-

nitive modeling, experimental psychology, linguistics, artificial intelligence, and

software engineering in this field has required researchers to develop a novel set

of research methodologies. This part surveys and explains computational mod-

eling research, in terms of detailed computational mechanisms and processes,

on memory, concepts, learning, reasoning, decision making, skills, vision, motor

control, language, development, scientific explanation, social interaction, and so

on. It contains case studies of projects, as well as details of significant models in

the computational cognitive modeling field. These chapters have been written

by some of the best experts in these areas. The final part, Concluding Remarks,

explores a range of issues associated with computational cognitive modeling

and cognitive architectures, and provides some perspectives, evaluations, and

assessments.

Although our goal has been to be as comprehensive as possible, the coverage

of this volume is, by necessity, selective. The selectivity is made necessary by

the length limitation, as well as by the amount of activities in various topic areas

— we need to cover areas with large amounts of scholarly activities, inevitably

at the cost of less active areas. Given the wide-ranging and often fast-paced

research activities in computational cognitive modeling, I never had any trouble

in finding interesting topics to include, but I often found myself in a position

whereby I had to sacrifice some less active topics.

As research in this field has developed at an exciting pace in recent years,

the field is ready for an up-to-date reference to the best and latest work. For

this field, what has been missing is a true handbook. Such a handbook should

bring together top researchers to work on chapters each of which summarizes

and explains the basic concepts, techniques, and findings for a major topic

area, sketching its history, assessing its successes and failures, and outlining the
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directions in which it is going. A handbook should also provide quick overviews

for experts as well as provide an entry point into the field for the next generation

of researchers. The present volume has indeed been conceived with these broad

and ambitious goals in mind.

7 Conclusions

It is clear that highly significant progress has been made in recent decades in

advancing research on computational cognitive modeling (i.e., computational

psychology). However, it appears that there is still a very long way to go before

we fully understand the computational processes of the human mind.

Many examples of computational cognitive modeling are presented in this

volume. However, it is necessary to explore and study more fully various possi-

bilities in computational cognitive modeling in order to further advance the state

of the art in understanding the human mind through computational means. In

particular, it would be necessary to build integrative cognitive models with a

wide variety of functionalities, that is, to build cognitive architectures, so that

they can exhibit and explain the full range of human behaviors (as discussed

before). Many challenges and issues need to be addressed, including those stem-

ming from designing cognitive architectures, from validation of cognitive models,

and from the applications of cognitive models to various domains.

It should be reasonable to expect that the field of computational cognitive

modeling will have profound impact on cognitive science, as well as on other re-

lated fields such as linguistics, philosophy, experimental psychology, and artifi-

cial intelligence, both in terms of better understanding cognition and in terms of

developing better (more intelligent) computational systems. As such, it should

be considered a crucial field of scientific research, lying at the intersection of

a number of other important fields. Through the collective effort of this re-
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search community, significant advances can be achieved, especially in better

understanding the human mind.

Acknowledgments

This work was carried out while the author was supported in part by ARI grants

DASW01-00-K-0012 and W74V8H-04-K-0002 (to Ron Sun and Bob Mathews).

Thanks are due to Aaron Sloman and Frank Ritter for their comments on the

draft.

References

J. R. Anderson, (1983). The Architecture of Cognition. Harvard University

Press, Cambridge, MA

J. R. Anderson and C. Lebiere, (1998). The Atomic Components of Thought.

Lawrence Erlbaum Associates, Mahwah, NJ.

J. R. Anderson and C. Lebiere, (2003). The Newell Test for a theory of cognition.

Behavioral and Brain Sciences. 26, 587-640.

W. Bechtel and G. Graham (eds.), (1998). A Companion to Cognitive Science.

Blackwell Publishers, Cambridge, UK.

M. Boden, (2006). Mind as Machine: A History of Cognitive Science. Oxford

University Press, Oxford, UK.

C. Coombs, R. Dawes, and A. Tversky, (1970). Mathematical Psychology. Pren-

tice Hall, Englewood Cliffs, NJ.

L. Coward and R. Sun, (2004). Criteria for an effective theory of consciousness

and some preliminary attempts. Consciousness and Cognition, Vol.13, pp.268-

301.

31



A. Damasio, (1994). Descartes’ Error: Emotion, Reason and the Human Brain.

Grosset/Putnam, New York.

W. Durkheim, (1895/1962). The Rules of the Sociological Method. The Free

Press, Glencoe, IL.

M. Dawson, (2002). Computer modeling of cognition: Levels of analysis. In:

Nadel, L. (ed.), Encyclopedia of Cognitive Science. pp. 635-638. Macmillan,

London, UK.

P. Dayan, (2003). Levels of analysis in neural modeling. In: L. Nadel (ed.),

Encyclopedia of Cognitive Science. Macmillan, London.

G. Greene, (1999). The Elegant Universe. Norton, New York.

S. Grossberg, (1982). Studies of Mind and Brain: Neural Principles of Learning,

Perception, Development, Cognition, and Motor Control. Norwell, MA: Kluwer

Academic Publishers.

D. Hintzman, (1990). Human learning and memory: Connections and dissocia-

tions. In: Annual Review of Psychology, pp.109-139. Annual Reviews Inc, Palo

Alto, CA.

E. Hutchins, (1995). How a cockpit remembers its speeds. Cognitive Science,

19, 265-288.

K. Koedinger, Anderson, J. R., Hadley, W. H., and Mark, M. (1997). Intelli-

gent tutoring goes to school in the big city. International Journal of Artificial

Intelligence in Education, 8, 30-43.

P. Langley, (1999). Concrete and abstract models of category learning. In:

Proceedings of the 21st Annual Conference of the Cognitive Science Society.

Erlbaum, Mahwah, NJ.

J. Lave, (1988). Cognition in Practice. Cambridge University Press, Cambridge,

England.

32



J. LeDoux, (1992). Brain mechanisms of emotion and emotional learning. In:

Current Opinion in Neurobiology. Vol.2, No.2, 191-197.

R. D. Luce, (1995). Four tensions concerning mathematical modeling in psy-

chology. Annual Review of Psychology, 46, 1-26. Annual Reviews Inc, Palo

Alto, CA.

D. Marr, (1980). Vision. MIT Press, Cambridge, MA.

D. Massaro, (1988). Some criticisms of connectionist models of human perfor-

mance. Journal of Memory and Language, 27, 213-234.

D. Meyer and D. Kieras, (1997). A computational theory of executive cognitive

processes and human multiple-task performance: Part 1, basic mechanisms.

Psychological Review. 104 (1), 3-65.

G. Miller, E. Galanter, and K. Pribram, (1960). Plans and the Structure of

Behavior. Holt, Rinehart, and Winston, New York.

D. Milner and N. Goodale, (1995). The Visual Brain in Action. Oxford Uni-

versity Press, New York.

M. Minsky, (1981). A framework for representing knowledge. In: J. Haugeland

(ed.), Mind Design, 95-128. MIT Press, Cambridge, MA.

M. Minsky, (1985). The Society of Mind. Simon and Schuster, New York.

A. Newell, (1990). Unified Theories of Cognition. Harvard University Press,

Cambridge, MA.

A. Newell and H. Simon, (1976). Computer science as empirical inquiry: Sym-

bols and search. Communication of ACM, 19, 113-126.

R. Nisbett, K. Peng, I. Choi, A. Norenzayan, (2001). Culture and systems

of thought: holistic versus analytic cognition. Psychological Review. 108 (2),

291-310.

S. Ohlsson and J. Jewett, (1997). Simulation models and the power law of

33



learning. In: Proceedings of the 19th Annual Conference of the Cognitive Science

Society. Erlbaum, Mahwah, NJ.

R. W. Pew and A. S. Mavor (eds), (1998). Modeling Human and Organiza-

tional Behavior: Application to Military Simulations. National Academy Press,

Washington, DC.

J. Rasmussen, (1986). Information Processing and Human-Machine Interaction:

An Approach to Cognitive Engineering. North-Holland, Amsterdam, Nether-

lands.

T. Regier, (2003). Constraining computational models of cognition. In: L.

Nadel (ed.), Encyclopedia of Cognitive Science. Macmillan, London. pp.611-

615.

F. E. Ritter, Shadbolt, N., Elliman, D., Young, R., Gobet, F., and Baxter,

G., (2003). Techniques for Modeling Human Performance in Synthetic Envi-

ronments: A Supplementary Review. Human Systems Information Analysis

Center, Wright-Patterson Air Force Base, Dayton, OH.

S. Roberts and H. Pashler, (2000). How persuasive is a good fit? A comment

on theory testing. Psychological Review, 107 (2), 358-367.

D. Rumelhart, J. McClelland and the PDP Research Group, (1986). Parallel

Distributed Processing: Explorations in the Microstructures of Cognition. MIT

Press, Cambridge, MA.

R. Schank and R. Abelson, (1977). Scripts, Plans, Goals, and Understanding:

An Inquiry into Human Knowledge Structures. Lawrence Erlbaum Associates,

Hillsdale, NJ.

A. Sloman and R. Chrisley, (2005). More things than are dreamt of in your biol-

ogy: Information processing in biologically-inspired robots. Cognitive Systems

Research, 6 (2), 145-174.

34



R. Sun, (1994). Integrating Rules and Connectionism for Robust Commonsense

Reasoning. John Wiley and Sons, New York, NY.

R. Sun, (2001). Cognitive science meets multi-agent systems: A prolegomenon.

Philosophical Psychology, 14 (1), 5-28.

R. Sun, (2002). Duality of the Mind. Lawrence Erlbaum Associates, Mahwah,

NJ.

R. Sun, (2004). Desiderata for cognitive architectures. Philosophical Psychol-

ogy, 17 (3), 341-373.

R. Sun, (2005). Theoretical status of computational cognitive modeling. Tech-

nical report, Cognitive Science Department, Rensselaer Polytechnic Institute,

Troy, New York.

R. Sun (ed.), (2006). Cognition and Multi-Agent Interaction: From Cognitive

Modeling to Social Simulation. Cambridge University Press, New York.

R. Sun, (2007). The importance of cognitive architectures: An analysis based

on CLARION. Journal of Experimental and Theoretical Artificial Intelligence,

in press.

R. Sun and L. Bookman (eds.), (1994). Computational Architectures Integrating

Neural and Symbolic Processes. Kluwer Academic Publishers, Boston, MA.

R. Sun, A. Coward, and M. Zenzen, (2005). On levels of cognitive modeling.

Philosophical Psychology, 18 (5), pp.613-637.

R. Sun, V. Honavar, and G. Oden, (1999). Integration of cognitive systems

across disciplinary boundaries. Cognitive Systems Research, Vol.1, No.1, pp.1-

3.

R. Sun and C. Ling, (1998). Computational cognitive modeling, the source of

power and other related issues. AI Magazine. Vol.19, No.2, pp.113-120.

R. Sun and I. Naveh, (2004). Simulating organizational decision-making using

35



a cognitively realistic agent model. Journal of Artificial Societies and Social

Simulation, Vol.7, No.3, June, 2004. http://jasss.soc.surrey.ac.uk/7/3/5.html

R. Sun, P. Slusarz, and C. Terry, (2005). The interaction of the explicit and the

implicit in skill learning: A dual-process approach. Psychological Review, 112

(1), 159-192.

A.M. Turing, (1950). Computing machinery and intelligence. Mind, Vol.LIX,

No.236.

B. van Fraasen, (1980). The Scientific Image. Oxford University Press, Oxford,

UK.

K. Vicente and J. Wang, (1998). An ecological theory of expertise effects in

memory recall. Psychological Review, 105 (1), 33-57.

L. Vygotsky, (1986). Mind in Society. Lawrence Erlbaum Associates, Hillsdale,

NJ.

H. Wilson, F. Wilkinson, L. Lin, and M. Castilo, (2000). Perception of head

orientation. Vision Research, 10, 459-472.

E. Zerubavel, (1997). Social Mindscape: An Invitation to Cognitive Sociology.

Harvard University Press, Cambridge, MA.

36


