
Heuristically Solving Minesweeper Project Report

By Jacob Singer

Abstract

 This project was an insight into how the game Minesweeper

is solved and implementing a way for a computer to solve the

game. This project was implemented in Common Lisp. I created a

standalone program to play Minesweeper, then created an

additional program, a “player” which would be used to play the

game.

Introduction

 Minesweeper is a logic puzzle video game that was released

in 1990 as part of the “Microsoft Entertainment Pack for

Windows.” It was written by Robert Donner and Curt Johnson at

Microsoft with the intention of “teaching people basic mouse

controls in an era where most computing had been text-based”

[1]. Minesweeper consists of a 2-dimensional board of tiles.

These tiles start hidden and can be revealed by the player.

Mines are placed randomly across the board, clicking on a mine

loses the game. The player can place a flag on a tile to

indicate that it is a mine. The goal is to reveal all of the

tiles which are not mines. There were 3 standard difficulties in

the original Minesweeper. Beginner – 10x10 board with 10 mines,

intermediate – 16x16 board with 40 mines, and expert – 30x16

with 99 mines.

 The goal of this project was to create a program which

could solve the majority of Minesweeper games. Solving every

single game is not feasible by any program with the default

board generation because it is common to reach a point where a

guess is the only way to solve the game.

Background

 Due to its relative simplicity in design and in playing,

Minesweeper has been a topic for research by quite a few

different people over the years. An extensive list of these

papers can be found on the “Authoritative Minesweeper” website

[2]. One of the first research papers done about Minesweeper was

done by Richard Kaye titled “Minesweeper is NP-Complete.” In

this paper Kaye talks about the age old P = NP question. He

makes the claim that Minesweeper is NP-complete, along with the

statement that “it may even be that some polynomial-time

algorithm is ‘good enough’ at solving the sort of Minesweeper

problems that occur in practice, even though (assuming P ≠ NP)

it cannot actually solve all theoretically possible

configurations” [3]. This paper set the expectations for this

project in that no matter how good the program is, it will not

be able to solve all games of Minesweeper. But with these

expectations also came the goal of an algorithm which is “good

enough.”

 Two other studies done on Minesweeper were the thesis

“Algorithmic Approaches to Playing Minesweeper” by David Becerra

[4], and a project report “The Complexity of Minesweeper and

Strategies for Game Playing” by Kasper Pedersen [5]. These

papers both discuss the difficulty of solving Minesweeper and

algorithms to do so. Becerra’s paper built off of a few of the

ideas presented by Pedersen and was my main point of reference

for my implementation.

Program Description

 The first half of my project involved the planning and

creation of the game itself. I ended up using the Common Lisp

Object System to model the tiles and the game board. To reveal

tiles, I created a function which reveals one tile then

recursively reveals surrounding tiles if the current tile has a

value of 0. Thinking ahead, I wrote this function as a Boolean.

If a mine was revealed it would return true which could be used

in both the game interface and the game playing algorithms. I

made a board generation function which randomly placed the mines

on the board. I then made a REPL in which a user could play

Minesweeper on the command line. I implemented the 3

difficulties explained in the introduction with a few small

tweaks. I named them easy, medium, and hard respectively. The

dimensions of hard were also changed to 24x20, which retains the

same number of mines as 30x16 but looks cleaner on a terminal.

 The second half of the project was dedicated to creating

the heuristic player. The first thing implemented was a

completely random player. I then planned to continuously add

heuristic rules to the player. The first rule I implemented was

one explained in Becerra’s thesis which involves which tile is

the best to reveal first [4]. Some games of Minesweeper have

true random board generation, including the original Microsoft

release and the one I wrote. With this fact, the first tile

revealed can be a mine. This makes the first click a random

guess. This fact leads to the question, which tiles are the best

to click first? The answers to this question are the corner

tiles. Since the corner tiles only have 3 neighbors, there is a

higher chance for the corner tiles to be a 0, which would result

in more of the board being revealed. The next strategy I created

was one I had thought up myself, which was then later confirmed

as a good strategy by both Becerra and Pederson. Pederson

labeled this method as the “Single Point Strategy” [5]. This

method probes a single tile and evaluates its neighbors to see

if any tiles are safe to be flagged or revealed. This is as far

as I was able to get with implementation.

 Single point evaluation is an effective rule on most easy

boards and some medium boards but was still left a lot of hard

patterns which would need the information from multiple tiles to

be solved. My first thought for this was to basically hard code

in common patterns and search for them throughout the board.

Upon further research and thought, I found that this method

would not be feasible, as checking every tile for every pattern

in any orientation would have been very computationally

expensive. Then with research I found a paper by Chris Studholme

which modeled Minesweeper as a Constraint Satisfaction Problem

[6]. This method seemed promising, but because of time

limitations and the difficulty of implementation, I was unable

to finish it.

Code Demos

Game Playing Interface

Random Player

Heuristic Player

Reflections and Conclusions

Stats on 100 games played
 Easy Medium Hard

Iteration Avg Tiles Wins Avg Tiles Wins Avg Tiles Wins
Random 58 2 85 0 116 0

Corner 1st 66 10 86 0 124 0
Single Point 75 76 147 35 169 1

 I would have liked to actually finish the constraint

satisfaction problem implementation as I had planned, but

unfortunately it did not happen. Other than that, I am happy

with the result of this project. The rules I did end up

implementing worked very well on easy boards and ok on medium

boards. I was able to learn more about one of my favorite games,

and the surprising relation to computer science that it has. I

might even continue working on this project in my spare time to

try to make it “good enough” [3] at playing Minesweeper.

Bibliography

[1] R. Cobbet, "The Most Successful Game Ever: a History of
Minesweeper," 5 May 2009. [Online]. Available:
https://www.techradar.com/news/gaming/the-most-successful-
game-ever-a-history-of-minesweeper-596504. [Accessed 12 May
2023].

[2] "Authoritative Minesweeper," [Online]. Available:
minesweepergame.com/. [Accessed 5 May 2023].

[3] R. Kaye, "Minesweeper is NP-Complete," The Mathematical
Intelligencer, vol. 22, pp. 9-15, 2000.

[4] D. Becerra, "Algorithmic Approaches to Playing Minesweeper,"
Hardvard College, 2015.

[5] K. Pedersen, "The Complexity of Minesweeper and Strategies for
Game Playing," Department of Computer Science University of
Warwick, 2005.

[6] C. Studholme, "Minesweeper as a Constraint Satisfaction
Problem," University of Toronto, 2001.

