
CSC466 Project Task 5

Random Player Creation

Abstract

 In this task I implemented a function to play a game of
minesweeper randomly. In order to do this, I added a field to
the board class to keep track of revealed tiles. I created a
list of unrevealed tiles from taking the set difference of all
of the tiles and all of the revealed tiles. I then chose a
random tile from this list and revealed it. I then created a
function with the purpose of playing n number of games and
reporting the statistics of these games.

Demo

[1]> (load "demos.l")

;; Loading file demos.l ...

;; Loading file hms.l ...

;; Loading file ms.l ...

;; Loaded file ms.l

;; Loaded file hms.l

;; Loaded file demos.l

T

[2]> (demo--random-game)

>>> Testing random game player

Playing game on easy with display option

 A B C D E F G H I J

 +---------------------+

 0 | # X # # # # X 2 1 0 |

 1 | # X # # # # # X 1 0 |

 2 | # # 1 # # # 1 1 1 0 |

 3 | # # # # X 2 1 0 0 0 |

 4 | # 2 # # # X 1 0 0 0 |

 5 | X 2 X # X 2 1 0 0 0 |

 6 | 1 2 1 2 1 1 0 0 0 0 |

 7 | 0 0 0 0 0 0 0 0 0 0 |

 8 | 0 1 1 1 0 0 0 0 0 0 |

 9 | 0 1 X 1 0 0 0 0 0 0 |

 +---------------------+

Playing game on easy with stats option

(73 100)

Playing 100 games on easy

Average number of tiles revealed: 60

Number of wins: 1

Playing 100 games on medium

Average number of tiles revealed: 52

Number of wins: 0

Playing 100 games on hard

Average number of tiles revealed: 25

Number of wins: 0

NIL

[3]>

Code

(defclass board ()

 (

 (width :accessor board-width :initarg :width)

 (height :accessor board-height :initarg :height)

 (mines :accessor board-mines :initarg :mines)

 (tiles :accessor board-tiles :initarg :tiles)

 (revealed-tiles :accessor board-revealed-tiles :initform '())

)

)

(defun play-random-game (&optional mode difficulty &aux move)

 (cond

 ((or (null difficulty) (equal difficulty 'easy))

 (generate-board 10 10 10))

 ((equal difficulty 'medium) (generate-board 16 16 40))

 ((equal difficulty 'hard) (generate-board 24 20 99))

)

 (loop

 (if (or (win-p) (reveal-random))

 (cond

 ((equal mode 'display) (display-board) (return nil))

 ((equal mode 'stats)

 (return (list (length (board-revealed-tiles *board*))

 (length (board-tiles *board*))))

)

 (t (return nil))

)

)

)

)

(defun reveal-random (&aux tiles revealed unrevealed)

 (setf tiles (board-tiles *board*))

 (setf revealed (board-revealed-tiles *board*))

 (setf unrevealed (set-difference tiles revealed))

 (reveal-tiles (list (nth (random (length unrevealed)) unrevealed))

'())

)

(defun play-n-random (n &optional difficulty &aux result revealed total wins)

 (setf revealed 0)

 (setf total 0)

 (setf wins 0)

 (dotimes (i n)

 (setf result (play-random-game 'stats difficulty))

 (setf revealed (+ revealed (car result)))

 (setf total (+ total (cadr result)))

 (if (win-p) (setf wins (+ 1 wins)))

)

 (format t "Average number of tiles revealed: ~a~%Number of wins: ~a~%" (

floor revealed n) wins)

)

