
CSC466 Project Task 6

Initial Heuristic Player

Abstract

 In this project I created the basic structure of rules for
my heuristic player. The structure consists of a list of the
rule functions, and a function which evaluates the rules in
order of significance. Each rule has a special return value if
the rule is not applicable so it can be removed from this list
and the next rule can be checked. The only rule I implemented in
this task was revealing the corner tiles before randomly
revealing tiles. I then ran many games with the random player
and the heuristic player and compared the results.

Demo

[1]> (load "demos.l")

;; Loading file demos.l ...

;; Loading file hms.l ...

;; Loading file ms.l ...

WARNING: Replacing method #<STANDARD-METHOD (#<STANDARD-CLASS
TILE>)> in #<STANDARD-GENERIC-FUNCTION TILE-INFO>

WARNING: The generic function #<STANDARD-GENERIC-FUNCTION
ADJACENT-TILES> is being modified, but has already been called.

WARNING: Replacing method #<STANDARD-METHOD (#<STANDARD-CLASS
TILE> #<BUILT-IN-CLASS LIST> #<BUILT-IN-CLASS LIST>)> in

 #<STANDARD-GENERIC-FUNCTION ADJACENT-TILES>

;; Loaded file ms.l

;; Loaded file hms.l

;; Loaded file demos.l

T

[2]> (demo--heuristic-game)

>>> Testing heuristic game player

Playing game on easy with display option

 A B C D E F G H I J

 +---------------------+

 0 | 0 0 0 0 0 1 # 1 0 0 |

 1 | 0 0 0 0 0 1 X 1 0 0 |

 2 | 0 1 1 1 0 1 1 1 0 0 |

 3 | 0 2 X 2 0 0 1 1 1 0 |

 4 | 0 2 X 2 0 0 1 X 1 0 |

 5 | 0 1 1 2 1 1 1 1 2 1 |

 6 | 0 0 0 1 X # # # # X |

 7 | 0 0 1 2 # # # # 2 # |

 8 | 0 0 1 X # X 2 # # X |

 9 | 0 0 1 # # # # X 2 1 |

 +---------------------+

Playing game on easy with stats option

(84 100)

Playing 100 games on easy

Average number of tiles revealed: 61

Number of wins: 8

Playing 100 games on medium

Average number of tiles revealed: 53

Number of wins: 0

Playing 100 games on hard

Average number of tiles revealed: 25

Number of wins: 0

NIL

[3]>

Statistics

 100 Games 1000 Games 10000 Games
 Avg Rev Wins Avg Rev Wins Avg Rev Wins

Random 58 2 56 25 55 382
Heuristic 66 10 63 45 63 524

Code

(defun play-heuristic-game (&optional mode difficulty &aux move)

 (cond

 ((or (null difficulty) (equal difficulty 'easy))

 (generate-board 10 10 10))

 ((equal difficulty 'medium) (generate-board 16 16 40))

 ((equal difficulty 'hard) (generate-board 24 20 99))

)

 (loop

 (if (or (win-p) (heuristic-move))

 (cond

 ((equal mode 'display) (display-board) (return nil))

 ((equal mode 'stats)

 (return (list (length (board-revealed-tiles *board*))

 (length (board-tiles *board*))))

)

 (t (return nil))

)

)

))

(defun play-n-heuristic(n &optional difficulty &aux result revealed total wins)

 (setf revealed 0)

 (setf total 0)

 (setf wins 0)

 (dotimes (i n)

 (setf result (play-heuristic-game 'stats difficulty))

 (setf revealed (+ revealed (car result)))

 (setf total (+ total (cadr result)))

 (if (win-p) (setf wins (+ 1 wins)))

)

 (format t "Average number of tiles revealed: ~a~%Number of wins: ~a~%"

 (floor revealed n) wins)

)

(defun heuristic-move (&aux li rule res)

 (setf li (rules))

 (loop

 (setf rule (pop li))

 (if (equal rule nil) (return nil))

 (setf res (funcall rule))

 (cond

 ((equal res 'na) (continue))

 (t (return res))

)

))

(defun rules ()

 (list

 #'corner-r

 #'reveal-random

)

)

(defun corner-r (&aux tl tr bl br)

 (setf tl (nth 0 (board-tiles *board*)))

 (setf tr (nth (- (board-width *board*) 1) (board-tiles *board*)))

 (setf bl (nth (* (board-width *board*) (- (board-height *board*) 1)

) (board-tiles *board*)))

 (setf br (nth (- (length (board-tiles *board*)) 1) (board-tiles

board)))

 (cond

 ((not (tile-revealed tl)) (reveal-tiles (list (nth (tile-name tl

) (board-tiles *board*))) '()))

 ((not (tile-revealed tr)) (reveal-tiles (list (nth (tile-name tr

) (board-tiles *board*))) '()))

 ((not (tile-revealed bl)) (reveal-tiles (list (nth (tile-name bl

) (board-tiles *board*))) '()))

 ((not (tile-revealed br)) (reveal-tiles (list (nth (tile-name br

) (board-tiles *board*))) '()))

 (t 'na)

)

)

