
CSC466 Project Task 8

Task Explanation

Abstract

 This task was supposed to be the implementation and testing
of a constraint satisfaction rule to improve the heuristic
player. Because of time constraints and poor planning on my
part, I was unable to fully implement the rule. Instead I wrote
up this document which explains how the rule would have worked
and the core concepts behind a constraint satisfaction problem.

Constraint Satisfaction Problems

 In essence, a constraint satisfaction problem is a
mathematical representation of a problem consisting of states
whose solutions must satisfy a set of constraints. There are
three components to a CPS problem:

• A set of variables
• A set of domains for each variable
• A set of constraints

A constraint is a set of variables and a relation that defines
the available values the variable can take. The goal of a CSP is
to find a value for every variable so that no constraint is
violated.

Minesweeper as a CSP

 Minesweeper works well as a CSP. The tiles represent the
variables. The domain of each tile is 0 or 1, where 0 represents
no mine, 1 represents a mine. And the constraints consist of the
set of neighboring tiles and the number of neighboring tiles
which are mines. The algorithm would then look for constraints
which could be combined and reduced to find tiles that can
either be safely revealed or confidently flagged.

My Ideas

 My first thought was that I needed to separate my edge
tiles into multiple lists in case there was more than one open
area. The image below shows and example of this, there are 3
different open sections, each would have to be its own list. One
problem with this is how my original list of edge tiles that I
wrote in task 7 added tiles in the order there are saved to the
board which happens to be from left to right starting from the
top left corner. This means that I would have needed a different
function which worked based off of the tile’s neighbors instead
of the list.

Next I would have made a constraint for each tile in each
list which would contain a list of its neighbors and the number
of unflagged neighboring mines. I would then need every subset
of constraints in which each element is a neighbor of the
previous element. I would then compare each subset to see if the
combination of any two subsets could tile(s) which could be
revealed or flagged.

A problem with this is that it would be inefficient to
check every combination of subsets. For example, from the
picture above this section contains 18 tiles, which is not the
biggest number of tiles which could be in a list. The number of
subsets which could be made from this list is high, since each
subset would have to be compared to every other subset until one
works.

 A potential solution to this would be to separate this list
above into smaller lists. Outside corners can be used to
separate the list, as tiles on each side cannot help the other
come to a solution. The list above could separated into 7 lists,
4 if the corners themselves are not counted as it only has 1
element.

 With this knowledge and more time I could have implemented
a working rule.

