Introduction

Belief revision is the process of changing beliefs to take into account a new piece of
information. This is a cognitive process that happens in our life every day as we learn and
process information. When we are exposed to a new piece of information, it is probably not that
case that we will believe it without a second thought. Our likelihood of accepting new
information and using it to refine our beliefs can be based on a lot of things such as personal
experience, source of information, frequency of exposure, and biases. Moreover, when we are
refining our beliefs, we may be able to generate new beliefs by combining new information with
existing beliefs, and this can be done in several ways. In this project, we aim to study a problem
which involves belief revision and build a computational model for that. The problem we have

picked is task prioritization, which is to determine the order of completing some tasks.

Background

There has been some research done on task prioritization, but they mostly focus on
prioritization when multitasking, or prioritization in computer systems. Although these do not
quite match the scenario we imagine, there are some components that we can take out and apply
to our situation.

In [1], Parasuraman and Rovira suggest potential enhancements for the Improved
Performance Research Integration Tool (IMPRINT), which is a discrete-event simulation and
human performance modeling software tool primarily used by the U.S. Department of Defense to
evaluate human performance when interacting with new and existing technology [2]. In the
section where they talk about task scheduling and prioritization, they show that a general priority

scheme makes the process of task prioritization more efficient by using the pilot training

example, in which pilots were separated into groups to receive different training. Some pilots
were taught a specific task management procedure, while the rest were not exposed to the
procedure. Results show that pilots who knew the procedure performed better with fewer
mistakes. We can see that in order to perform efficient prioritization, we need to define high and
low priority in specific procedures. We can do this by setting up clear guidelines to determine
which task should be processed first. For example, we can look at what kind of task it is, how
urgent it is, how hard it is, etc. In this paper, they also mentioned that the time deadline to
complete all the tasks must also be taken into account. That means we have to do things in a way
that ensures we have enough time for all awaiting tasks in our hands. In usual cases, we
definitely perform the tasks with high priority first. But if those tasks require some resources that
may take longer to acquire, maybe picking up other tasks with lower priority to “get them out of
the way” is a more efficient choice.

In [3], Rhodes et al. focused on how memory storage can affect one’s ability of
processing information. When there are multiple tasks needed to be processed concurrently, we
need a way to determine which task to give our attention and time to. One way to decide which
task to prioritize is by looking at the cost of each task. They introduce two terms for that -
prioritization cost and concurrence cost. Prioritization cost refers to any decline in performance
when we shift our emphasis away from a task, and concurrence cost refers to any drop in
performance when we shift from single-task processing to dual-task processing. Concurrence
cost might not be relevant in our project since we assume that we are able to only process one
task at a time. Prioritization cost might be important to our project but it probably will be defined
in a little different way. In our scenario, the prioritization cost can be related to the time we have

left and the number of remaining tasks. If we choose to prioritize one task, can we make sure that

the resources it consumes will not affect the completion of the other tasks? Currently the only
given resource in our project is time. To be specific, time is what we will trade for completion of
tasks. We might also want to consider having a time limit for each day because in real life, we
only have a certain amount of time allocated for certain tasks, and we would like to get tasks
done while utilizing our limited time. Similar to the idea of time deadline in the previous
paragraph, if a task with high priority is hard to complete and will take a very long time, maybe
shifting our focus to some easier low-priority tasks would be more efficient. In order to do that,
we need to think about how to represent the difficulty of a task, so we went on to do some
research on that.

Difficulty representation is actually very common in video games. Let's take Super Mario
as an example. The way they measure difficulty and set an order to the levels is by testing and
calculating the amount of players that are able to get through the level without losing a life and
such. If all the players are able to get through the level without losing a life, the difficulty
compared to a level where one player lost a life, would be easier since more people were able to
complete it without consequence. But this is pretty complicated to implement and doesn’t apply
to our world that well. What we might end up doing would just be categorizing task difficulty,
such as easy, medium, difficult, or extra credit. We will try to mimic the tasks we have in real life

and take our personal experience into consideration.

Methods
In our proposed computational model, the beliefs would be the tasks we want to
prioritize. Our belief set will include the type, the due date, and the difficulty of each task. To

reason with the beliefs, we reorder the tasks based on the three aforementioned factors. Tasks

with a more important type (e.g. academic) will be on the top of the list. If two tasks have the
same type, then priority is determined by their due dates. The task with the sooner due dates will
be prioritized. If two tasks have the same due date, our prioritization will be determined by their
difficulties. We can pick whichever is easier to do first.

There are two conditions for possible belief revision, which are 1) when the user adds a
new task; or 2) when the user modifies an existing task. When adding a task, we first check if the
task exists in the belief set. We do not do anything if it is an existing task. If this task does not
exist in the belief set, we do not simply append it to the belief set. Instead, we compare this new
task with every existing task in the belief set to decide where to place it, then add it at the
determined position. When modifying a task, we have to remove the task being modified from
the belief set because it is contradicting the new version we are going to have. After that, we
follow a similar approach in adding, where we compare this modified task to the rest of the belief
set to determine its new position in the set. The techniques for prioritization of two tasks are

mentioned in the first paragraph.

Implementation
In this section, we will show how our model works with a valid running example:
?- prioritizer.
Task Prioritizer...
There is no task currently.
Add a task...

| : cs project due 12/1 hard

Here is the list of tasks, ordered in terms of their priority levels:

1. cs project due:12/1 difficulty:hard
When we start the program, there is no task in the belief set yet, so we prompt the user to add a
task. Since the belief set is empty, there is no task to compare to, and the new task automatically

becomes our priority regardless of its type, due date, or difficulty.

Type 1 to add a task...

Type 2 to modify a task...
Type to end this program...
[+ 1

Add a task...

|: slides for club meeting on 11/30 easy

Here is the list of tasks, ordered in terms of their priority levels:
1. cs project due:12/1 difficulty:hard
2. slides for club meeting due:11/30 difficulty:easy

Now that we have an existing task, modifying a task becomes an option. When the user adds

another task, there are two tasks in the belief sets, which is enough to perform prioritization. In

b

this case, the CS project is of type “academic,” while the slides for club meeting is of type “eca.’

We defined “academic” as a type with higher priority, so the CS project is prioritized.

Type 1 to add a task...

Type 2 to modify a task...
Type to end this program...
[+ 1

Add a task...

|+ math homework due 12/3 normal

Here is the list of tasks, ordered in terms of their priority levels:
1. cs project due:12/1 difficulty:hard

2. math homework due:12/3 difficulty:normal

3. slides for club meeting due:11/30 difficulty:easy

Here, a new task math homework of type “academic” is added to the belief set. Based on the
reasoning we had, the math homework has a higher priority than the slides for club meeting.
However, it has the same type as the CS project, which is currently our priority. To determine
whether it will replace our current priority, we have to look at their due dates now. Since the CS
project is due earlier, it should be placed before the math homework, thus it remains as our

priority.

Type 1 to add a task...

Type 2 to modify a task...

Type to end this program...

[+ 2

Type the index of the task you want to modify...
1. cs project due:12/1 difficulty:hard

2. math homework due:12/3 difficulty:normal

3. slides for club meeting due:11/30 difficulty:easy
|+ 2

Type 1 to modify task type...

Type 2 to modify task name...

Type 3 to modify task due date...

Type 4 to modify task difficulty...
|+ 3
Type task new due date (Month/Date)...

|+ 11/30

Here is the list of tasks, ordered in terms of their priority levels:
1. math homework due:11/30 difficulty:normal

2. cs project due:12/1 difficulty:hard

3. slides for club meeting due:11/30 difficulty:easy

Let’s say the user later realizes that the math homework is actually due earlier, so now the due
date for that needs to be modified. The user can pick the task that needs to be modified and
change the corresponding details. Since the math homework is modified, it has to be removed
from the belief set and added again with different information. In this case, the math homework
is now due earlier than the CS project, so it becomes the current priority, and the CS project gets

pushed back.

Type 1 to add a task...

Type 2 to modify a task...
Type to end this program...
|+ exit

Bye!

true.

There is an option for the user to end this program. The belief set will be cleared once the

program ends.

Discussion

Our implemented computational model is successful in prioritizing tasks based on three
factors: types of tasks, due dates, and difficulties of tasks. A user is able to add new tasks to the
belief set and modify the details of existing tasks. When any action that may change the belief set
is performed, the model will reconsider the order of the tasks. So the main goal of this model is
accomplished. Using this model as a framework, one can easily make modifications to make it fit
into a different scenario, e.g., a business determining which orders to fulfill first. Similar to our
world, the order that was placed the earliest should be processed first. There are also cases where
a customer would pay extra to have express shipping or such, then that order should be moved up
to the top of the list. This can be taken care of by specifying the type of the order.

There are a few limitations in our implemented computational model. To start off, we
simplified our prioritization factors down to just three as mentioned above. We did not consider
the specific amount of time needed for a task, which is actually important in a real world
scenario. However, one can claim that time is considered one of the factors, which is the
difficulty of a task. Since we did not define difficulties explicitly, when a user is deciding the
difficulty of a particular task, one can take the amount of time needed into consideration.
Another limitation is that this model does not show any bias, which is something present in
humans. When we are deciding which task to prioritize, we always have certain tasks in our
heads that we definitely want to get done first, and some that we just want to postpone forever.
We do not really have an effective way to show that in the model reasonably. Moreover, this
model only depicts the mindset of one person, but everybody may have a unique way to decide
one's priority. We do not know if the mindset we have chosen is efficient enough, and we don't

really have other systems to compare our model to. Therefore, this model may not be as good

when it comes to generality. If we have more time to work on this model, one thing we would
definitely like to improve is error handling. In the current version, if a user enters some inputs
that cannot be parsed, the program will end with a "false" without any explanation of failure. To
fix this, we will have to add an extra case in the code every time we are reading an input from the
user. If the put cannot be parsed, we have to let the user know the correct format of input, and
repeat the action of reading input until the program receives a reasonable input and can parse it

without any problem.

Conclusion

Belief revision is a complex process that is really difficult to be accurately represented by
a computer program, so our computational model is definitely not enough to show how humans
prioritize tasks in general. In limited time, we successfully implemented a model that only
depicts specific situations, and we identified some limitations of our current model.
Improvements can be made to make this model accept more variations of inputs and become

more user-friendly. Nonetheless, we are satisfied with the outcome.

Bibliography

[1] Parasuraman, R., & Rovira, E. (2005). Workload Modeling and Workload Management:
Recent theoretical developments. https://doi.org/10.21236/ada432181

[2] Rusnock, C. F., & Geiger, C. D. (2013). Using discrete-event simulation for cognitive
workload modeling and system evaluation. IIE Annual Conference. Proceedings, 2485-2494.
[3] Rhodes, S., Jaroslawska, A. J., Doherty, J. M., Belletier, C., Naveh-Benjamin, M., Cowan,
N., Camos, V., Barrouillet, P., & Logie, R. H. (2019). Storage and processing in working
memory: Assessing dual-task performance and task prioritization across the adult lifespan.

Journal of Experimental Psychology: General, 148(7), 1204—1227.

https://doi.org/10.1037/xge0000539

Appendix

Current version of the prolog code:
academic (project) .
academic (homework) .

work (tutor) .

work (ta) .

eca (club) .

dueMonth (1) .
dueMonth (2) .
dueMonth (3) .
dueMonth (4) .
dueMonth (5) .
dueMonth (6) .
dueMonth (7) .
dueMonth (8) .
dueMonth (9) .
dueMonth (10) .
dueMonth (11) .

dueMonth (12) .

dueDay (1) .
dueDay (2) .
dueDay (3) .
dueDay (4) .

dueDay (5) .

dueDay (6) .
dueDay (7) .
dueDay (8) .
dueDay (9) .
dueDay (10) .
dueDay (11) .
dueDay (12) .
dueDay (13) .
dueDay (14) .
dueDay (15) .
dueDay (16) .
dueDay (17) .
dueDay (18) .
dueDay (19) .
dueDay (20) .
dueDay (21) .
dueDay (22) .
dueDay (23) .
dueDay (24) .
dueDay (25) .
dueDay (26) .
dueDay (27) .
dueDay (28) .
dueDay (29) .
dueDay (30) .

dueDay (31) .

parse due (Type, String, [due, DueMonth, (/), DueDay, Difficulty],
Task) :-

dueMonth (DueMonth), dueDay (DueDay),

Task = [Type, String, [DueMonth, DueDay], Difficulty].
parse due (Type, String, [on, DueMonth, (/), DueDay, Difficulty],
Task) :-

dueMonth (DueMonth), dueDay (DueDay),

Task = [Type, String, [DueMonth, DueDay], Difficultyl].
parse due (Type, String, [First, due, DueMonth, (/), DueDay,
Difficulty], Task) :-

string concat(String, First, Name),

dueMonth (DueMonth), dueDay (DueDay),

Task = [Type, Name, [DueMonth, DueDay], Difficulty].
parse due (Type, String, [First, on, DueMonth, (/), DueDay,
Difficulty], Task) :-

string concat(String, First, Name),

dueMonth (DueMonth), dueDay (DueDay),

Task = [Type, Name, [DueMonth, DueDay], Difficulty].
parse due(Type, String, [First|Rest], Task) :-

string concat(String, First, Temp),

string concat (Temp, " ", NextString),

parse due (Type, NextString, Rest, Task).
parse task([First|Rest], Task) :- string concat(First, " ", String),

parse_ task(String, Rest, Task).

parse task([First|Rest], Task) :-

downcase atom(First, LowerFirst), academic(LowerFirst),
string concat(First, " ", NextString),
parse due (academic, NextString, Rest, Task).

parse task([First|Rest], Task) :-
downcase atom(First, LowerFirst), work(LowerFirst),
string concat(First, " ", NextString),
parse due (academic, NextString, Rest, Task).

parse task([First|Rest], Task) :-
downcase atom(First, LowerFirst), eca(LowerFirst),
string concat(First, " ", NextString),
parse due (academic, NextString, Rest, Task).

parse task(String, [First|Rest], Task) :-
downcase atom(First, LowerFirst), academic(LowerFirst),
string concat(String, First, Temp),
string concat (Temp, " ", NextString),
parse due (academic, NextString, Rest, Task).

parse task(String, [First|Rest], Task) :-
downcase atom(First, LowerFirst), work(LowerFirst),
string concat(String, First, Temp),
string concat(Temp, " ", NextString),
parse due (work, NextString, Rest, Task).

parse task(String, [First|Rest], Task) :-
downcase atom(First, LowerFirst), eca(LowerFirst),
string concat(String, First, Temp),
string concat (Temp, " ", NextString),

parse due(eca, NextString, Rest, Task).

parse task(String, [First|Rest], Task) :- string concat(String,
First, Temp),

string concat (Temp, , NextString),

parse task(NextString, Rest, Task).

indexList ([1, [1]).

indexList ([Element|Rest], Indices) :- indexList (Rest, RestIndices),

length([Element |Rest], Length),

append (RestIndices, [Length], Indices).

display tasks([Index], [[_, Name, [DueMonth, DueDay], Diff]]) :-
write (Index), write(". "),
write (Name), write(" due:"), write (DueMonth), write("/™),

write (DueDay),

write (" difficulty:"), write(Diff), nl.

display tasks([Index|RestIndices], [[, Name, [DueMonth, DueDay]
Diff] |Rest]) :- write(Index), write(". "),
write (Name), write(" due:"), write (DueMonth), write("/"),

write (DueDay),
write (" difficulty:"), write(Diff), nl,

display tasks (RestIndices, Rest).

show current state([]) :- write("There is no task currently."),
show current state(Tasks) :- write("Here is the list of tasks,
ordered in terms of their priority levels:"),

14

nl.

nl, indexList(Tasks, Indices), display tasks(Indices, Tasks).

add task(Task, Tasks, Tasks) :- member (Task, Tasks),
write ("This task exists in the list already."), nl.

add task(Task, [], [Task]).

add task(Task, Tasks, NewTasks) :- prioritize(Task, Tasks, NewTasks).

dueSooner ([DueMonthl,], [DueMonth2, 1) :-
DueMonthl < DueMonth?2.
dueSooner ([DueMonth, DueDayl], [DueMonth, DueDay2]) :-

DueDayl < DueDay?2.

prioritize ([Typel, Namel, Duel, Diffl], [[Type2, Name2, DueZ2,
Diff2]], NewTasks) :-

(Typel = academic, Type2 = work ;

Typel academic, Type?2 eca ;
Typel = work, Type2 = eca),
NewTasks = [[Typel, Namel, Duel, Diffl], [Type2, Name2, DueZ2,
Diff2]].
prioritize ([Typel, Namel, Duel, Diffl], [[Type2, Name2, DueZ2,

Diff2]], NewTasks) :-

(Type?2 academic, Typel work ;

Type2 = academic, Typel = eca ;

Type?2 work, Typel = eca),
NewTasks = [[Type2, Name2, Due2, Diff2], [Typel, Namel, Duel,

Diffl]].

prioritize ([Typel, Namel, Duel, Diffl], [[Type2, Name2, DueZ2,
Diff2]], NewTasks) :-
Typel = Type2, Duel = DueZ2,

(Diffl = easy, Diff2 = normal ;

Diffl = normal, Diff2 = hard ;
Diffl = easy, Diff2 = hard),
NewTasks = [[Typel, Namel, Duel, Diffl], [Type2, Name2, DueZ2,
Diff2]].

prioritize ([Typel, Namel, Duel, Diffl], [[Type2, Name2, DueZ2,
Diff2]], NewTasks) :-

Typel = Type2, Duel = Due2,

(D1iff2 easy, Diffl = normal ;

Diff2 = normal, Diffl = hard ;
Diff2 = easy, Diffl = hard),
NewTasks = [[Type2, Name2, Due2, Diff2], [Typel, Namel, Duel,
Diffl]].
prioritize ([Typel, Namel, Duel, Diffl], [[Type2, Name2, DueZ2,
Diff2] |Rest], NewTasks) :-

(Typel = academic, Type2 = work ;

Typel = academic, Type2 = eca ;
Typel = work, Type2 = eca),
NewTasks = [[Typel, Namel, Duel, Diffl], [Type2, Name2, Due2,

Diff2] |Rest].
prioritize ([Typel, Namel, Duel, Diffl], [[Type2, Name2, DueZ2,
Diff2] |Rest], NewTasks) :-

(Type2 = academic, Typel = work ;

Type2 = academic, Typel = eca ;

Type2 = work, Typel = eca),

prioritize ([Typel, Namel, Duel, Diffl], Rest, PartNewTasks),

NewTasks = [[Type2, Name2, Due2, Diff2] |PartNewTasks].
prioritize ([Typel, Namel, Duel, Diffl], [[Type2, Name2, Due2,
Diff2] |Rest], NewTasks) :-

Typel = Type2, dueSooner (Duel, Due2),

NewTasks = [[Typel, Namel, Duel, Diffl], [Type2, Name2, DueZ2,
Diff2] |Rest].
prioritize ([Typel, Namel, Duel, Diffl], [[Type2, Name2, DueZ2,
Diff2] |Rest], NewTasks) :-

Typel = Type2, dueSooner (Due2, Duel),

prioritize ([Typel, Namel, Duel, Diffl], Rest, PartNewTasks),

NewTasks = [[Type2, Name2, Due2, Diff2] |PartNewTasks].
prioritize ([Typel, Namel, Duel, Diffl], [[Type2, Name2, DueZ2,
Diff2] |Rest], NewTasks) :-

Typel = Type2, Duel = Due2,

(Diffl easy, Diff2 = normal ;
Diffl = normal, Diff2 = hard ;

Diffl

easy, Diff2 = hard),
NewTasks = [[Typel, Namel, Duel, Diffl], [Type2, Name2, DueZ2,
Diff2] |Rest].
prioritize ([Typel, Namel, Duel, Diffl], [[Type2, Name2, DueZ2,
Diff2] |Rest], NewTasks) :-
Typel = Type2, Duel = Due2,

(Diff2 = easy, Diffl = normal ;

Diff2 = normal, Diffl = hard ;

Diff2 = easy, Diffl = hard),
prioritize ([Typel, Namel, Duel, Diffl], Rest, PartNewTasks),

NewTasks = [[Type2, Name2, Due2, Diff2] |PartNewTasks].

find task(l, [Task]|], Task).
find task(Index, [|Rest], Task) :-

Next is Index - 1, find task(Next, Rest, Task).

remove task([Task|Rest], Task, Rest).
remove task([DiffTask|Rest], Task, TempTasks) :-

remove task(Rest, Task, Temp), TempTasks = [DiffTask]|Temp].

determine type([1l], academic).
determine type([2], work).

determine type([3], eca).

determine due ([Month, (/), Duel], [Month, Due]).

determine diff ([1], easy).
determine diff ([2], normal).

determine diff ([3], hard).

modify([1], [_, Name, Due, Diff], [NewType, Name, Due, Diff]) :-
write ("Type 1 for academic..."), nl,

write ("Type 2 for work..."), nl,

write ("Type 3 for eca..."), nl,
read word list(List),
determine type (List, NewType) .
modify([2], [Type, , Due, Diff], [Type, String, Due, Diff])
write ("Type task new name..."), nl,
read word list(List), atomics to string(List, String).
modify([3], [Type, Name, , Diff], [Type, Name, NewDue, Diff])
write ("Type task new due date (Month/Date)...™), nl,
read word list(List),
determine due (List, NewDue).

modify([4], [Type, Name, Due,], [Type, Name, Due, NewDiff])

write ("Type 1 for easy..."), nl,
write ("Type 2 for normal..."), nl,
write ("Type 3 for hard..."), nl,

read word list(List),

determine diff (List, NewDiff).

modify task([Index], Tasks, NewTasks) :-
find task(Index, Tasks, Task),

remove task(Tasks, Task, TempTasks),

write ("Type 1 to modify task type..."), nl,

write ("Type 2 to modify task name..."), nl,

write ("Type 3 to modify task due date..."), nl,
write ("Type 4 to modify task difficulty..."), nl,

read word list(List),

modify(List, Task, ModifiedTask),

prioritize (ModifiedTask, TempTasks, NewTasks).

process _action([1l], Tasks, NewTasks) :-
write ("Add a task..."), nl,
read word list(List),
parse task(List, Task),
add task(Task, Tasks, NewTasks).
process_action([2], Tasks, NewTasks) :-
write ("Type the index of the task you want to modify..."), nl,
indexList (Tasks, Indices), display tasks(Indices, Tasks),
read word list(List),

modify task(List, Tasks, NewTasks).

prioritizer :-
Tasks = [],
write ("Task Prioritizer..."), nl,

show current state(Tasks),

write("Add a task..."), nl,

read word list(List),

(List = [exit] -> write("Bye!"), nl, !;
(parse task(List, Task),

add task(Task, Tasks, NewTasks),

nl, prioritizer (NewTasks))), !'.

prioritizer (Tasks) :- show current state(Tasks), nl,

write("Type 1 to add a task...™), nl,

write ("Type 2 to modify a task..."), nl,

write ("Type <exit> to end this program..

read word list(List),
(List = [exit] -> write("Bye!"), nl, !;
(process_action(List, Tasks, NewTasks),

nl, prioritizer (NewTasks))), !.

read word list(Ws) :-

read line to codes(user input, Cs),
atom codes (A, Cs),

tokenize atom(A, Ws).

."),

nl,

