Second Prolog Assignment

Learning Abstract

At First, State Space Solving was really difficult for me but after getting help with it, this
assignment makes sense. It uses Head/Tail notation, which | am very familiar with. By
referencing the in class State Space Problem and going over the Unit Tests that were given to
us.

Task 3

ml2 ([TowerlBefore, Tower2Before, Tower3], [TowerlAfter, TowerZ2After, Tower3]) :
TowerlBefore = [H|T],

TowerlAfter = T,

Tower2Before = 1L,

Tower2After = [HIL].A

Unit test code

ml2 ([TowerlBefore, Tower2Before, Tower3], [TowerlAfter, TowerZ2After, Tower3]) :
TowerlBefore = [H|T],

TowerlAfter = T,

Tower2Before = 1L,

Tower2After = [HIL]u

Unit test demo

ml2 ([TowerlBefore, Tower2Before, Tower3], [TowerlAfter, Tower2After, Tower3]) :
TowerlBefore = [H|T],

TowerlAfter = T,

Tower2Before = 1L,

TowerZ2After = [H|L].,

Task 4

ml2 ([TowerlBefore, Tower2Before, Tower3], [TowerlAfter, Tower2After, Tower3]) :
TowerlBefore = [H|T],

TowerlAfter = T,

Tower2Before = 1,

Tower2After = [H|L].

ml3 ([TowerlBefore, Tower2, Tower3Before], [TowerlAfter, Tower2, Tower3After]) :
TowerlBefore = [H|T],

TowerlAfter = T,

Tower3Before = 1,

Tower3After = [H|L].

m21 ([TowerlBefore, TowerZ2Before, Tower3], [TowerlAfter, TowerZ2After, Tower3]) :
Tower2Before = [H|T],

Tower2After = T,

TowerlBefore = 1,

TowerlAfter = [H|L].

m23 ([Towerl, Tower2Before, Tower3Before], [Towerl, Tower2After, Tower3After]):
Tower2Before = [H|T],

Tower2After = T,

Tower3Before = 1,

Tower3After = [H|L].

m31l ([TowerlBefore, Tower2, Tower3Before], [TowerlAfter, Tower2, Tower3After]) :
Tower3Before = [H|T],

Tower3After = T,

TowerlBefore = 1,

TowerlAfter = [H|L].

m32 ([Towerl, Tower2Before, Tower3Before], [Towerl, Tower2After, Tower3After]) :
Tower3Before = [H|T],

Tower3After = T,

Tower2Before = 1L,

Tower2After = [H|L].

% ——— Unit test programs

test_ _ml2 :-

write ('Testing: move ml2\n'),
TowersBefore = [[t,s,m,1,h],[1,1[11,
trace('', 'TowersBefore', TowersBefore),
ml2 (TowersBefore, TowersAfter),
trace('', 'TowersAfter', TowersAfter).

test ml3 :-

write ('Testing: move ml3\n'),
TowersBefore = [[t,s,m,1,h],[1,0[11,
trace('', 'TowersBefore', TowersBefore),
ml3 (TowersBefore, TowersAfter),
trace('', '"TowersAfter', TowersAfter).

test m21 :-

write ('Testing: move m21\n'),
TowersBefore = [[],[t,s,m,1,h],[]],
trace('', '"TowersBefore', TowersBefore),
m21 (TowersBefore, TowersAfter),
trace('', '"TowersAfter', TowersAfter).

test _m23 :-

write ('Testing: move m23\n'),
TowersBefore = [[],[t,s,m,1,h],[]1],
trace('', '"TowersBefore', TowersBefore),
m23 (TowersBefore, TowersAfter),
trace('', 'TowersAfter', TowersAfter).

%est__m31 .

write('Testing: move _m31\n'),
TowersBefore = [[],[]1,[t,s,m,1,h]],
trace('', '"TowersBefore', TowersBefore),
m31l (TowersBefore, TowersAfter),
trace('', 'TowersAfter', TowersAfter).

test_ _m32 :-
write ('Testing: move m32\n'),
TowersBefore = [[],[],[t,s,m,1,h]],

trace('', '"TowersBefore', TowersBefore),
m32 (TowersBefore, TowersAfter),
trace('', 'TowersAfter', TowersAfter).

Demo

7-test__m21.
Testing: move_m21
TowersBefore’ = [t.s,m,|h],[]

?- consult{'toh_pro'). TowersAfter' ="[[f].[s,m,1h],[]]
true. true.

?-test_m12. ?-test_m23.

Testing: move_m12 Testing: move_m23

TowersBefore’ =[[ts,mLh] [l TowersBefore’ = [[l,[ts,m,Lh][]]
TowersAtter' ="[[s,m,|,h][t].[I] TowersAfter' ="[[],[s,m,|.h],[t]]

frue. frue.
?-test_m13. ?-test_m31. ?-test_m32.
Testing: move_m13 Testing: move_m31 Testing: move_m32

TowersBefore' = its,mLh][,[] TowersBefore’ = [} fts,m] ~ TowersBelore = [}tsm|h]
TowersAter = smIh|[jj TowersAfer =[f,[.s,mih)] TowersAfer =[] [i[smih]

Task 5

2 S

$ --- valid state(S) :: S is a valid state

valid state([P1,P2,P3]):-

valid p(P1), valid p(P2), valid p(P3). valid p([s,m]).
valid p([s,1]1).

valid p([]). valid p([s,h]).

valid p([t]). valid p([s,m,1]).

valid p([t,s]). Valid_p([s,m,h]).‘

valid p([t,m]). valid p([s,1,h]).

valid p([t,1]). valid p([m]).

valid p([t,h]). valid p([m,1]).

valid p([t,s,m]). valid p([m,h]).

valid p([t,s,m,1]). valid p([m,1,h]).

valid p([t,s,m,h]). valid p([1]).

valid p([t,s,m,1,h]). valid p([1,h]).

valid p([s]). valid p([h]).

test_ _valid state :-
write('Testing: wvalid state\n'),
test_ vs([[l,t,s,m,h],[]1,[1]),
test_ vs([[t,s,m,1,h],[]1,[]1]);,
test vs([[],[h,t,s,m],[1]1]),
test_ vs (Crl,t,sy,m,hl, [111),
test__vs([[1,[h],[1l,m,s,t]]),
test__vs([[], [h], [t,s,m,1]]).
test_ _vs(8) :—

valid state(S),

write(S), write(' is wvalid.'), nl.
test_ _vs(8) :-

write(S), write(' is inwvalid.'), nl.

Unit test program
?- consult{'toh_pro').
frue.

?7-test__valid_state.
Testing: valid_state
[[l.ts,m.h][].[] 1s invalid.
[its,m,Lh][].[]] 1s valid.
[[].[h.ts,m] [l]] is invalid.
[[.it.s,m,h] [1]] is valid.
[[.[h],[l,m,s f] is invalid.
[0,IhL.[ts,m.I] is valid.

frue

Task 6

- - - - - - -SS - -S-S-S-SSS-S-S-S--TT-- -t TT-=
$ ——— write_sequence_reversed(S) :: Write the sequence, given by S,

% ——— expanding the tokens into meaningful strings.

write solution(S) :-

nl, write('Solution ...'), nl, nl,
reverse (S,R),

write sequence (R),nl.

write sequence ([]).
write sequence ([H|T]) :-
elaborate (H,E),

write (E),nl,

write sequence (T).

elaborate (ml2,Elaboration) :-
Elaboration = 'Transfer a disk from tower 1 to tower 2.°'.
elaborate (ml3,Elaboration) :-—
Elaboration = 'Transfer a disk from tower 1 to tower 3.'.
elaborate (m21,Elaboration) :-—
Elaboration = 'Transfer a disk from tower 2 to tower 1.°'.
elaborate (m23,Elaboration) :-—
Elaboration = 'Transfer a disk from tower 2 to tower 3.'.
elaborate (m31,Elaboration) :-—
Elaboration = 'Transfer a disk from tower 3 to tower 1.'.
elaborate (m32,Elaboration) :-—
Elaboration = 'Transfer a disk from tower 3 to tower 2.°'.

test write sequence :-—

write('First test of write sequence ...'), nl,
write sequence([m31,ml2,ml3,m21]),
write ('Second test of write sequence ...'), nl,

write sequence([ml3,ml2,m32,ml13,m21,m23,m13]).

Unit test program code

test_ write_sequence :-
write('First test of write_sequence...), nl,
write_sequence([m31,m12,m13,m21]), write('Second test of
write_sequence ...), nl,
write_sequence([m13,m12,m32,m13,m21,m23,m13]).

?- consult('toh_pro').
true.

?7-test__write_sequence.

First test of write_sequence .

Transfer a disk from tower 3 to tower 1.
Transfer a disk from tower 1 to tower 2.
Transfer a disk from tower 1 to tower 3.
Transfer a disk from tower 2 to tower 1.
Second test of write_sequence ..
Transfer a disk from tower 1 to tower 3.
Transfer a disk from tower 1 to tower 2.
Transfer a disk from tower 3 to tower 2.
Transfer a disk from tower 1 to tower 3.
Transfer a disk from tower 2 to tower 1.
Transfer a disk from tower 2 to tower 3.
Transfer a disk from tower 1 to tower 3.
frue.

PathSoFar = "[[[s,m,I],[1. 1]

Move’ ='m12

NextState’ = "[[m,1],[s].[I]

PathSoFar = [[[m,I],[s].[1.[[s,m.1.0.011

Move’ ='m12

NextState’ = "[[].[m,s].[I]

Move ='m13

NextState’ = [[l].[s].[m]]

PathSoFar = [[[I.[s].Im]LIm.1Lis].0.0s.m.1. 001

Move’ ='m12

NextState’ = "[[].[I,s].[m]]

Move’ ='m13

NextState’ = [[].[s],[I,m]]

Move’ ='m21

NextState’ = "[[s,I],[],[m]]

PathSoFar = "[[[s I|.0L[m]L[[0.[s].[m]].0m. 11 s].00.[s.m.1. 0.1
Move’ ='m12

NextState’ = "[[I].[s].[m]]

Move’ ='m13

NextState’ = "[[I].[].[s,m]]

PathSoFar = [[[l],1.[s,m]1,[[s.11.0LIm11.[0[s], [mil, [T, 11 [s1.01.[fs,m, 1,001
Move’ ='m12

NextState’ = "[[],[I,[s,m]]

PathSoFar = [[[]{.[s.m]L.[11.0.Is,m]L.[is.1.0.ImILI0.s].im]). {fm. 11.[s1.00.[1s.m. 1.0.00)
Move’ ='m21

NextState’ = [[I].[.[s,m]]

Move’ ='m21

NextState’ = [[1],[1.[s.m]]

Move’' ='m23

NextState’ = [[],[I.[l.s.m]]

Move’ ='m31

NextState’ = [[s],[1].Im]]

PathSoFar = "[[[s].[I].[m]L.[0.0.{s.mIL[[1.0.[s.mL{s.1.0.[m]L [, [s].[m]L. ([. [s]. 00, [s.m. 11, 0.0

Move' ='m12

NextState’ = [[].[s.1].[m]]

]li’aThSOFar' = "ML, I L s 100 oD L . [, L. [, [s 1L [s 0L 0, [D1 [0 [S LI L L L Es 100 LS mU L L

Move’ ='m21
NextState’ = [[s].[I].[m]]
Move’ ='m23
NextState’ = [[],[1],[s,m]]

Move' ='m31

NextState’ = [[m],[s,I].[I]

T[amslc])Fl]EI]]?]: ‘[0, s, 100,00 [s. 11 o], L] 0, {1 0 0. [o1, L0, 1. [,] (0. /1.0, o1, [0,] [[1 .0
s.m[I,

Move’' ='m12

NextState’ = [[],[m,s,1L,[]]

Move' ='m13

NextState’ =[], [s,1].[m]]

Move' ='m21

NextState’ = [[s,m],],[l]

PathSoFar = [[[s,m],[I,01,{{m][s,1].01.(0.[s.1.(mL[[s].0.(m{L[0.01.[s.mI.[10.0. (s mi). [{s.I1.0.[m1. {1 [s]. [m1]]
[, IL[s], 0L (s m. 10,00

Move' ='m12

NextState’ = "T[m],[s,],[l]

Move' ='m13

NextState’ = "TIm],[I[s]]

PathSoFar’ ="[[[m},{I,[s]1.{[s,m] .01, {{m].[s. 1,00, 0L[s. . {m L (i L 00, (] 010, [o1, 01, 0. b 1. .11, 0. []
0[] (mi] [11 [s], 01 [fs.m. 10,00

Move’' ='m12

NextState’ = "[[J,[m.I],[s]]

PathSoFar' = [[[],[m,I],[s]1,{[m],{1s]1.{{s,m]. [01, (], [s. 1 0L [0 (.1, (1, [fs] 00, (oo, [0, 01 5, o], (01, [, m]]
181101 {0, [s], (], [fm, 1,], 0. [is m. 11,00

Move’ ='m21
NextState’ = "[[ml,[l}[s]]
Move’ ='m23
NextState’ = [J,[1],[m.s]]
Move’' ='m31

NextState’ = [[s],[m,I],[]]
PathSoFar’ ="[[[s],[m.][.{0.(m.]Is]1.{fm], 1. (S]1[{s, m] {1, 01, (fm]. s, 1. 0. 0.[s. . Imm]1 (1], 0. [1.1 fs. m]]
[0.0.f.mi1.[(s.I1.0.[mIL [0, fs1.[mi]. [{m. 1 {s1.01.[fs. m.I1.0. 01

Move’' ='m12

NextState’ = [J,[s,m,I],[l

PathSoFar’ =[], [s,m, 1] 0L.[is.m, 1100, [0 {m. 1, (11, {(m], [, [s1].[[s.m], {1, 01 (i (.11, 0000 .11 (1 [s]. {1, [m]
L0 (s, miL {01, 0. [, miL [[s, 1.0, [mL [0, [s], (L (e 11 [s], 00, [fs. m. 1. 0011

Move’ ='m21
NextState’ = [[s],[m,I][]
Move' ='m23
NextState’ = '[[[m,I][s]]
Move' ='m13
NextState’ = [[J,[m,],[s]]
Move’ ='m21
NextState' = "[[m,s],[]

Move' ='m23

NextState’ =[[],[m.I][s]]

Move' ='m13

NextState’ = [[|,[m,I][s]]

Move’ ='m21

NextState’ ="[[m,s],[1.]

Move' ='m23

NextState' = [[s],[Il.[m]]

Move' ='m32

NextState’ ="[[],[s,m,I|[]

PathSoFar = [[[l[s,m, I} {IL.{0.(m. 1. s 1. (], {1 [11. ({sm]. 0,01, (0. [s. 11,00, [0, (.1, [(s . [(o1, (0.1, [, m]
L0 [s. mll, (.10 [m]1, (0, (1. [m]1, {fm, 1, (1. 01, (s, m 11,0 01)

Move’ ='m21

NextState’ = [[s],[m,I]I]

PathSoFar = "({[s],[m, 1], .s,m.I1, 0100 [11 [s11. {fm], 0. [s]1. 00, m], 11,01, [fm]. [, 1,01, 0. [s. 11 (o1, [fs]. 1. [m]
110,00, [, I [0 0. (s mL (.10, 0. (1 (00, [], [], (o 1, 1 01 [0, 1.0, 01

Move' ='m12
NextState’ = '[[][s,m,I].[]
Move' ='m13
NextState’ = '[[|[m,I][s]]
Move' ='m21
NextState’ = [[m,s][][]
Move' ='m23
NextState’ = [[s],[I,[m]]
Move' ='m23
NextState’ = '[[|,[m,I][s]]
Move' ='m13

Move' ='m21

NextState’ = '[[l,m],[J,[s]]

Move' ='m23

NextState’ = [[m],[.1.s]]

Move' ='m31

NextState’ = [s,m],[I],[]

Move' ='m32

NextState’ = [[m],[s,].[l]

Move' ='m21

NextState’ = '[ls,m],[.[]

Move' ='m23

NextState’ = [[s,m],[J,[1]
PathSoFar ="[lis,m], 0. (is,m].01.0.0(m]. 10,00, [s.11.(m]. (1.0l 11 0.0, mlL IO 0. Is. mlL s, 1.0 Im]
L. 1.1, [fm, 1. (sL 00, ffs.m. 10,01

Move' ='m12

NextState’ = "[m],[s]. 1]

PathSoFar = [[[m],[s],[1].{[s,m],0.071[fs,m1. 00,01, (0], [s. 1,00, 10.[s. 1. [mL[Es] O [o]1, (000, s 1. [0, [.[s. m]
1110 [m]1, (0. (1. [miL [1. [s]. 01, (s m. 110001

Move' ='m12

NextState’ = "[[],[m,s].[1]

Move' ='m13

NextState’ = [[],[s],[m. 1]

PathSoFar = [[[l[s].[m, I, {{m],[s], 1L (fs,m1. 0,11, ([s,ml I, 01, [{m].[s, 11 0L [0 (. /1. (m11 ([s], (1, [, [0 01 s, mi]
01,0, ts.ml, (fs. 1.0 [mL (00, [s. (]l ([, 11, [s], 0. [l m. 11,001

Move' ='m21

NextState’ = "[[s],[].[m.I]]

PathSoFar' = {[s],{I.(mI]L.[0.[s].(m.ITL.((m].[s].0L[[s, m], 0071 [[s, m], {1, OL. (v, [, 1 OL [0 .1, [m L[], 0. [m]]
000 (s m]1 (01,01 [s, mL (.1, 0[] 0[], (m], [fm, 1, (1. 00 00, m 1,0 011

Move' ='m12

NextState’ = "[[],[s],[m,]]]

Move' ='m13

NextState’ = "[[],[,[s,m,l]]

PathSoFar = [[[s,m,], (1,01, {(m.IL.[s], 011, [s]. Im{L[[s. 11 0. (1, {1, . [, m1. [, 01 s, miL [[s]. 1, (1. [[s.11.[m]

LIl s, 1,0, [fs m]. [, 01 [fs, m. 0101, (i, [s], 071 [0, (. [, 1 0, . [em, 1, 0. [
SolutionSoFar =’[m12,m13,m21,m13 m12m31,m12m31,m21,m23 m12m13 m21,m13]

Solution ...

Transfer a disk from tower 1 to tower 2.
Transfer a disk from tower 1 to tower 3.
Transfer a disk from tower 2 to tower 1.
Transfer a disk from tower 1 to tower 3.
Transfer a disk from tower 1 to tower 2.
Transfer a disk from tower 3 to tower 1.
Transfer a disk from tower 1 to tower 2.
Transfer a disk from tower 3 to tower 1.
Transfer a disk from tower 2 to tower 1.
Transfer a disk from tower 2 to tower 3.
Transfer a disk from tower 1 to tower 2.
Transfer a disk from tower 1 to tower 3.
Transfer a disk from tower 2 to tower 1.
Transfer a disk from tower 1 to tower 3.

Iruel

1) 14

2) 7

3) The program is just making whatever moves gets it to the goal. This means that the
route given may not be the shortest path.

Task 8
Transfer a disk from tower 1 to tower 2.
Transfer a disk from tower 1 to tower 3.
Solution .. Transfer a disk from tower 2 to tower 1.

Transfer a disk from tower 1 to tower 2.
Transfer a disk from tower 1 to tower 3.
Transfer a disk from tower 2 to tower 1.
Transfer a disk from tower 1 to tower 3.
Transfer a disk from tower 1 to tower 2.
Transfer a disk from tower 3 to tower 1.
Transfer a disk from tower 1 to tower 2.
Transfer a disk from tower 3 to tower 1.
Transfer a disk from tower 2 to tower 1.
Transfer a disk from tower 1 to tower 3.
Transfer a disk from tower 1 to tower 2.
Transfer a disk from tower 3 to tower 1.
Transfer a disk from tower 1 to tower 2.
Transfer a disk from tower 1 to tower 3.
Transfer a disk from tower 2 to tower 1.
Transfer a disk from tower 1 to tower 3.
Transfer a disk from tower 2 to tower 1.
Transfer a disk from tower 3 to tower 1.

Transfer a disk from tower 1 to tower 3.
Transfer a disk from tower 2 to tower 1.
Transfer a disk from tower 3 to tower 1.
Transfer a disk from tower 1 to tower 2.
Transfer a disk from tower 3 to tower 1.
Transfer a disk from tower 2 to tower 1.
Transfer a disk from tower 1 to tower 3.
Transfer a disk from tower 1 to tower 2.
Transfer a disk from tower 3 to tower 1.
Transfer a disk from tower 1 to tower 2.
Transfer a disk from tower 1 to tower 3.
Transfer a disk from tower 2 to tower 1.
Transfer a disk from tower 1 to tower 3.
Transfer a disk from tower 2 to tower 1.
Transfer a disk from tower 3 to tower 1.
Transfer a disk from tower 1 to tower 2.
Transfer a disk from tower 1 to tower 3.
Transfer a disk from tower 2 to tower 1.
Transfer a disk from tower 1 to tower 3.

frue .

Task 9

$ ——— File: towers_of hanoi.pro
% ——— Line: Program to solve the Towers of Hanoi problem
& .

% ——— make_ _move(S,T,SSO) :: Make a move from state S to state T by SSO

make move (TowersBeforeMove, TowersAfterMove,mlZ) :-—
ml2 (TowersBeforeMove, TowersAfterMove) .
make move (TowersBeforeMowve, TowersAfterMove,ml3) :-—
ml3 (TowersBeforeMove, TowersAfterMove) .
make move (TowersBeforeMove, TowersAfterMove,m21) :-
m21 (TowersBeforeMove, TowersAfterMove) .
make move (TowersBeforeMove, TowersAfterMove,m23) :-—
m23 (TowersBeforeMove, TowersAfterMove) .
make move (TowersBeforeMove, TowersAfterMove,m31) :-
m31l (TowersBeforeMove, TowersAfterMove) .
make move (TowersBeforeMove, TowersAfterMove,m32) :-—
m32 (TowersBeforeMove, TowersAfterMove) .

ml2 ([TowerlBefore, TowerZ2Before, Tower3], [TowerlAfter, Tower2After, Tower3])

TowerlBefore = [H|T],
TowerlAafter = T,
TowerZ2Before = 1L,
Tower2After = [H|L] .

ml3 ([TowerlBefore, Tower2, Tower3Before], [TowerlAfter, Tower2, Tower3After])

TowerlBefore = [H|TI],
TowerlAfter = T,
Tower3Before = 1L,
Tower3After = [H|L].

m2]1 ([TowerlBefore, TowerZ2Before, Tower3], [TowerlAfter, Tower2After, Tower3])

Tower2Before = [H|T],
Tower2After = T,
TowerlBefore = L,
TowerlAfter = [H|L].

m23 ([Towerl, Tower2Before, Tower3Before], [Towerl, Tower2After, Tower3After])

Tower2Before = [H|T],
Tower2After = T,
Tower3Before = 1,
Tower3After = [H|L].

m3]1 ([TowerlBefore, Tower2, Tower3Before], [TowerlAfter, Tower2, Tower3After])

Tower3Before = [H|T],
Tower3After = T,
TowerlBefore = 1L,

m32 ([Towerl, TowerZ2Before, Tower3Before], [Towerl, Tower2After, Tower3After])
Tower3Before = [H|T],

Tower3After = T,

TowerZBefore = L,

TowerZ2After = [H|L].

$ ——— valid_state(S) :: S is a valid state
valid state([P1,P2,P3]):-
valid p(Pl), wvalid p(P2), walid p(P3).

valid p([]).
valid p([t]).
valid p([t,s]).
valid p([t,m]).
valid p([t,1]).
valid p([t,h]).
valid p(lt,s,ml)..

valid p([t,s,m,1]) .
valid p([t,s,m,h]).
valid p([t,s,m,1,h]).
valid p([s]) .-
valid p([s,m]) .
valid p([s,11) .
valid p([s,h]).
valid p([s,m,1]) .
valid p([s,m,h]).
valid p([s,1,h]).
valid p([m]).

valid p([m,1]).
valid p([m,h]) .
valid p([m,1,h]).
valid p([1]) .

valid p([1,h]) .
valid p([h]) .

valid p([s,m,1,h]).
wvalid p([t,m,1,h]).

% __
% ——— solve(Start,Solution) :: succeeds if Solution represents a path

$ ——— from the start state to the goal state.

solve :-—

extend path([[[s,m,1,h], []1,[11]1,[]1,Solution),
write_solution(Solution).

extend path(PathSoFar, SolutionSoFar, Solution) :-—
PathSoFar = [[[]1,[],[s,m,1,h]] |_]r

showr ('PathSoFar', PathSoFar),
showr ('SolutionSoFar', SolutionSoFar),

Solution = SolutionSoFar.
extend path(PathSoFar, SolutionSoFar, Solution) :—
PathSoFar = [CurrentState]|_],

show ('PathSoFar"', PathSoFar),

make move (CurrentState,NextState,Move),
show ("Move ', Move) ,

show ("NextState"', NextState),

not (member (NextState, PathSoFar)) .,
valid state (NextState),

Path = [NextState|PathSoFar],

Soln = [Move|SclutionSoFar],
extend_path (Path, Soln, Solution) .

$ ——— write_ sequence_reversed(S) :: Write the seguence, given by S,
% ——— expanding the tokens into meaningful strings.

write_ solution(S) :-—

nl, write('Solution ..."'), nl, nl,
reverse (S,R),

write_ sequence(R),nl.

write_ sequence([]) .
write_sequence ([H|T]) :-
elaborate (H,E),
write(E),nl,

write_ sequence (T) .

elaborate (ml2,Elaboration) :-—

Elaboration = 'Transfer a disk from tower 1 to tower 2.°'.
elaborate (ml3,Elaboration) :-—

Elaboration = 'Transfer a disk from tower 1 to tower 3.'.
elaborate (m21,Elaboration) :-—

Elaboration = 'Transfer a disk from tower 2 to tower 1.°'.
elaborate (m23,Elaboration) :-—-

Elaboration = 'Transfer a disk from tower 2 to tower 3.°'.
elaborate (m31l,Elaboration) :-

Elaboration = 'Transfer a disk from tower 3 to tower 1.°'.
elaborate (m32,Elaboration) :-—

Flaboration = '"Transfer a disk from tower 3 to tower 2._.'.
.
% --- Unit test programs

test ml2 :-

write ('Testing: move mi2\n'),

TowersBefore = [[t,s,m,1,h], []1,[1],

trace('', 'TowersBefore', TowersBefore),

ml2 (TowersBefore, TowersAfter),

trace('', 'TowersAfter', TowersAfter).

test__ml3 :-

write ('Testing: move ml3\n'),
TowersBefore = [[t,s,m,1,h],[],[11,
trace('', 'TowersBefore', TowersBefore),
ml3 (TowersBefore, TowersAfter),
trace('', 'TowersAfter', TowersAfter).

test_ m21 :-

write ('Testing: move m21\n'),
TowersBefore = [[],[t,s,m,1,h],[1]1,
trace('', 'TowersBefore',TowersBefore),
m21 (TowersBefore, TowersAfter),
trace('', 'TowersAfter', TowersAfter).

test_ m23 :-

write ('Testing: move m23\n'),
TowersBefore = [[],[t,s,m,1,h], 11,
trace('', '"TowersBefore',TowersBefore),
m23 (TowersBefore, TowersAfter),
trace('', 'TowersAfter', TowersAfter).

test_ m31 :-

write ('Testing: move m31\n'),
TowersBefore = [[],[],[t,s,m,1,h]],
trace('', 'TowersBefore', TowersBefore),
m31 (TowersBefore, TowersAfter),
trace('', 'TowersAfter', TowersAfter).

test vs(S) :-
valid state(S),

write(S), write(' is valid.'), nl.

test vs(S) :-

test wvalid state :-
write('Testing: valid state\n'),
teSt_VS([[lltlslmlh]I [1,011),
test__vs([[t,s,m,1,h], [],[]]),
test_vs([[],[h,t,s,m], [1]]),
tQSt_VS([[]I [t,s,m,h],[1]]),
teSt__VS([[]I[h]I[lImIS!t]])I
test ws([[1,[hl,lt,s,m,111).

write(S), write(' is invalid.'), nl.

