Kuncheng Feng
CSC 466 Presentation

Location Object

Abstract

Due to the induced demand of RandomPlayerPlus to keep track of locations on a
board,it needs to constantly move locations to different lists (explored, unexplored,
preferred), this class is created to make it easier.

Demo

The reason | feel | need this new class is because the member and remove function
cannot correctly match lists with same elements:

[5]> (equal "(x y) '(xy))

-

[6]> (equal '(x y) (car '((x y) (a b))))

T

[7]> (member '(x y) "((xy) (a b)))

NIL

[8]> (member '(x . vy) '"((x . y) (a . b)))
NIL

[9]> (remove '(x y) '((x y) (a b)))
((X'Y) (A B))

However, they can recognize the same instance in a list:

[19]> (setf 11 (newLocation))
#<LOCATION >

[11]> (setf 12 (newLocation))
#<LOCATION >

[12]> (setf 1ls (list 11 12))

(#<LOCATION > #<LOCATION
[13]> (member 11 1s)

(#<LOCATION > #<LOCATION
[14]> (remove 11 1s)

(#<LOCATION >)

The class also include some functions for easier manipulation:

[15]> (setf allL (generateAllLocations

(#<LOCATION > #<LOCATION #<LOCATION

#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION
#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION

#<LOCATION #<LOCATION #<LOCATION
#<LOCATION

#<LOCATION #<LOCATION #<LOCATION
#<LOCATION

#<LOCATION #<LOCATION #<LOCATION
#<LOCATION

#<LOCATION #<LOCATION #<LOCATION
#<LOCATION

#<LOCATION #<LOCATION #<LOCATION
#<LOCATION

#<LOCATION #<LOCATION #<LOCATION
#<LOCATION)

[16]> (setf (getFromList alllL))
#<LOCATION >

[17]> (location-x)

[18]> (location-y

[19]> (setf adjacents (getAdjacents alllL))

(#<LOCATION > #<LOCATION > #<LOCATION

#<LOCATION)

[20]> (loop for 1 in adjacents do (format t "Location X Y: ~A ~A~%"

(location-x 1) (location-y 1)))

Location X Y:

Location X Y:

Location X Y:

Location X Y:

NIL

[21]> (getAdjacents (getFromList alllL) alll)

(#<LOCATION > #<LOCATION > #<LOCATION
>)

[22]> (getAdjacents (getFromList alllL) alll)

(#<LOCATION > #<LOCATION >)

[23]> (getLeftAdjacent (getFromList alll) alll)

#<LOCATION >

Relevant Code

About half of the code is shown here, as | felt they are the most important, plus they
all do what their function/method name suggests.

The getAdjacents function takes in a location, and returns all adjacent location
instances in a list, if they are present in the list passed in.
The idea is to pass in a list of unexplored locations, and find all neighboring locations

that are relative to the current location.
getAdjacents((1 location) (1ls list) adjacent result)

result (list))

(adjacent (getLeftAdjacent 1 1s))
(if (not (equal adjacent))

(result (cons adjacent result))

(adjacent (getRightAdjacent 1 1s))
(if (not (equal adjacent))

(result (cons adjacent result))

(adjacent (getAboveAdjacent 1 1s))
(if (not (equal adjacent))

(result (cons adjacent result))

(adjacent (getBelowAdjacent 1 1s))
(if (not (equal adjacent))

¢ result (cons adjacent result))

The get(Left/Right/Above/Below)Adjacent method all acquire the x and y coordinates

of a location, and try to acquire the one next to it from the list.
getAboveAdjacent((1l location) (1ls list) X Yy)

(X (location-x 1))
(y (location-y 1))
(getFromList x (- y 1) 1s)

getBelowAdjacent((1l location) (1ls list)
(x (location-x 1))
(y (location-y 1))
(getFromList x (+ y 1) 1s)

getLeftAdjacent((1l location) (1ls list)
(x (location-x 1))

(y (location-y 1))
(getFromList (- x 1) y 1s)

getRightAdjacent((1l location) (1ls list)
(x (location-x 1))
(y (location-y 1))
(getFromList (+ x 1) y 1s)

The getFromList method will dig through a list of locations, and return an instance

with matching x and y.
getFromList(x y (1ls list) location)

location (car 1s))

((equal location

(= x (location-x location)) (= y (location-y location)))

location

(getFromList x y (cdr 1s))

