
User-Interactive Algorithmic Composition

Kayla Gray

CSC 466 - Artificial Intelligence II

Professor Graci

State University of New York at Oswego

May 7, 2023



Abstract

This project experiments with the addition of more human collaboration in algorithmic

composition. Oftentimes, the sole humans involved in the music compositions produced by

algorithmic composition machines are the programmers who code the algorithms and fine-tune

parameters. Music, being a medium for expression of the human experience, should involve

humans in the composition process. This paper chronicles the semester-long development of a

hybrid constraint-based system and interactive genetic algorithm algorithmic composition

program that uses user rankings to determine the fitness of music samples in a population.

Introduction

The topic of artificial intelligence art is one of tense connotations, and it is rightfully so.

Generally, the artificial intelligence artist is programmed to perform solo, undermining and

perhaps even threatening the human artist in the process. In a similar sense, algorithmic music

composition falls in contention with the human musician. Yet, this does not have to be the case;

technology can be and should be used to optimize, as opposed to replace, the human experience.

In the research I conducted on algorithmic composition for my honors thesis, I noticed a

somewhat disheartening trend of minimizing human involvement – usually down to the

programmers – in various algorithmic composition machines over time. I wanted to explore a



variant of the collaborative algorithmic composition machine proposed by Chip Bell to find ways

to bring more humans, not just musicians and programmers, into the realm of music production.

The following section provides relevant background information pertaining to

algorithmic composition with a focus on constraint-based systems and genetic algorithms. Then,

a high-level description of my algorithmic composition program is presented, followed by

relevant demos that depict the progress of the project throughout the semester. In the

“Reflections and Conclusions” section, I consider my project experience through the lens of past,

present, and future, and share my sentiments about the lessons learned during the undertaking of

this programming project. The ultimate section of the paper presents a bibliography of referenced

sources.

Background

Algorithmic composition is a method of composing music that relies on one or more

algorithmic processes to create resultant compositions. The key component of algorithmic

composition is the collaborative experience between machine and humans, of which there are

varying degrees of human interaction (Maurer). The variety of approaches can be subdivided into

indeterminate and deterministic approaches. Indeterminate, also known as stochastic, approaches

use a degree of randomness to produce outputs that differ upon each run of the algorithm.

Determinate approaches, on the other hand, result in the same outputs each time the algorithm is

applied (Edwards 61).



The field of algorithmic composition has evolved from non-computer approaches to

sophisticated computerized approaches over time. Mozart’s Musikalisches Würfelspiel, or

“musical dice game,” was a purely non-technological approach to algorithmic composition that

allowed players to create music merely through rolling some dice and choosing some playing

cards. The game was the result of permutation, combination, and adherence to music theory

(Maurer). The Quadrille Melodist is a similar variant of Musikalisches Würfelspiel that could

create 428 million distinct quadrilles (Edwards 21). During the 1900s, composer John Cage

pioneered the aleatory music movement, where probability and randomness were used to

generate music compositions (Maurer). The first computer approach to algorithmic composition

occurred in the 1950s: Lejaren Hiller and Leonard Isaacson created the Illiac Suite, which

utilized Markov chains to create music (Edwards 61). Other approaches manifested in the digital

era. CHORAL is a rule-based system that uses over 350 rules to generate compositions. David

Cope’s Experiments in Music Intelligence uses a synthesis of rules and grammar-related methods

for creating music in the style of input compositions it trains on (Maurer). More modern AI tools

include the likes of Amper, OpenAI Jukebox, and Soundraw, which create compositions

featuring multiple instrumental parts using neural networks. More recently, Google released

MusicLM, which generates music based on a text prompt inputted by the user (Bishop). Some

other computerized methods include: constraint-based systems, genetic algorithms, and neural

networks.



The two systems that are pertinent to the program that is the topic of this paper are

constraint-based systems and genetic algorithms. Constraint-based systems feature a set of

defined, system-wide constraints that outputs must adhere to in order to satisfy the “constraint

satisfaction problem” at hand. Every element of the output must abide by the system constraints

in order to be considered a solution to the constraint satisfaction problem. For instance,

constraints that deal with harmony restrict the solution set of pitches that can be used based on

the input melody of pitches (Anders and Miranda 30:4). To build off of the previous example,

imagine the constraint satisfaction problem is as follows: given an input melody of pitches,

return a solution melody of pitches that harmonizes across the octave with the input. If the input

is the melody of C1D1E1, then the solution that satisfies the constraint satisfaction problem is

pitches C2D2E2 , where C2D2E2 is in a different octave than C1D1E1. Constraint systems have

been successful in the generation of melodies, harmonies, and counterpoint (Fernández and Vico

530).

A genetic algorithm is a type of evolutionary algorithm that uses mutation, crossover,

selection, and copy to evolve individuals in an initial population. The fitness metric is used to

measure which individuals are more likely to “survive” in the next generation of individuals. An

initial population of individuals is generated and ranked by the fitness method. Then, crossover,

mutation, and copy occur depending on the probability percentages assigned to these methods.

These processes repeat until the next generation is populated. Successive generations are

generated until the generation number reaches the pre-defined goal number of generations



(Burton and Vladimirova 60). There have been successful applications of genetic algorithms that

have created melodies and jazz solos (Fernández and Vico 552).

This project was directly inspired by Chip Bell’s design for a hybrid approach to

algorithmic composition using Markov chains and a genetic algorithm in “Algorithmic Music

Composition Using Dynamic Markov Chains and Genetic Algorithms.” In his paper, Bell argues

that the subjectivity of music preference is significant and should not be ignored in algorithmic

composition systems. To incorporate subjectivity in resultant music compositions, Bell relies on

a variant of a genetic algorithm, known as an “interactive genetic algorithm,” where the fitness

metric is the user (Bell 99). The system uses Markov chains to generate compositions featuring

three instrumental parts – a melody, a chord progression, and a rhythm line – which make up the

initial population of music sample individuals (101). Then, the interactive genetic algorithm is

used to incorporate the subjective preferences of the user into the music samples of the next

generation. The user chooses the two best samples from the population. Bell uses different linear

algebra computations, since Markov chains can be represented as stochastic matrices, on the two

top-ranked samples to create the next generation. This process repeats until the defined number

of generations is met (102). I was interested in Bell’s incorporation of user preference into the

generation of music samples, so I tweaked the idea to make a project I could finish in a semester.

Program Description



Unlike Bell’s system, this program utilizes a hybridization of a simplistic

constraint-based system and an interactive genetic algorithm to produce music samples featuring

two instrumental parts. The interactive nature of the genetic algorithm stems from the fitness

metric based on user ranking of the music samples. The idea is to use technology to afford an

opportunity for music production to people who are less versed in music without having the user

program music themselves.

The constraint-based system is used to generate the individual music samples that make

up the initial population of music samples. Each music sample consists of two melodies. Melody

generation consists of the following steps:

1. A list of note durations (integer values) are generated based on a defined

number of beats.

2. A pitch is generated for each duration in the aforementioned list. This

differs between melody 1 and melody 2.

a. For Melody 1:

i. Randomly-chosen pitches from the C major scale are

selected.

b. For Melody 2:

i. Pitch generation is based on a random selection of one of

following choices:

1. Harmonization

a. Copy melody 1’s duration list.

b. Get the position of the first pitch in melody

1’s pitch list based on its location in the C

major scale. Then, add 2 to the position if it

does not exceed the length of the list.

Otherwise, subtract 2 from the position. Use



the new position to get the harmony pitch

from the corresponding location in the C

major scale..

c. Add the new pitch to melody 2’s list of

pitches.

d. Continue this process until melody 2’s list of

pitches matches the length of melody 1’s list

of pitches.

2. Octave Harmonization

a. Copy melody 1’s duration and pitch lists.

b. Randomly choose an octave that is different

from melody 1.

3. Permutation

a. Copy melody 1’s duration list.

b. Randomly select a pitch from melody 1’s

pitch list.

c. Add that pitch to melody 2’s pitch list.

d. Remove that pitch from melody 1’s pitch

list.

e. Repeat until there are no pitches left in

melody 1’s pitch list.

4. Bassline

a. Bassline follows the same random creation

process as melody 1, except note durations

are constrained to whole notes, half notes,

and quarter notes, and there is a higher

probability of generating pitches that are

stepwise in motion (increase by a pitch

interval of one).

5. Random

3. The octave is randomly selected.



4. The results of the aforementioned steps are initialized into “note” objects

for each duration-pitch pair, which are added one-by-one to a list.

The two melodies generated by the steps above are placed into a “Music” object to represent the

full music sample. The music sample and individual melody parts are outputted as ABC notation

for user playback.

Demos

This section showcases demos of significant features of the project. They are as follows:

melody 2 generation, mutation, crossover, interactive selection, double-crossover, and the final

genetic algorithm.

Figure 1: Stepwise Bassline Demo



Figure 2: Octave Harmonization Demo

Both Figure 1 and Figure 2 are examples of how the constraint system has an impact on

music sample generation. In Figure 1, the highlighted portion is melody 2, which was generated

using the stepwise bassline method. Bassline durations are constrained to whole notes,

half-notes, and quarter notes, which can be seen in the ABC notation highlighted in Figure 1.

Additionally, the bassline is in a lower octave, denoted by “,” in ABC notation. The notes also

show stepwise motion with respect to the C major scale. Figure 2 showcases the octave

harmonization in action. When octave harmonization is chosen for melody 2, the pitches,

durations, and order of notes are constrained to that of melody 1; the only change is the octave.

The second melody highlighted in Figure 2 depicts this adherence to the aforementioned

constraints.



Figure 3: Mutation Demo

Figure 3 shows how a music sample is mutated in this implementation of the genetic

algorithm. In an earlier implementation of this project, music samples consisted of three

melodies. This was later switched to two melodies for simplicity. The highlighted notes

demonstrate mutations–in each melody, the pitch and duration of a single note is changed.



Figure 4: “Double-Crossover” Demo

Figure 4 depicts the method of “double-crossover” in the genetic algorithm

implementation. The resulting child has four parents: the two top-ranked melody 1 individuals

and the two top-ranked melody 2 individuals. The first n notes of the melody from the first

parent and the remaining notes from the second parent are combined in crossover for melody 1

and melody 2, hence the name “double-crossover.”



Figure 5: Interactive Selection - EasyABC Version

Figure 6: Interactive Selection - MuseScore



Figures 5 and 6 show the user interaction interfaces for EasyABC and MuseScore,

respectively. In the EasyABC version, samples, represented in ABC notation, are shown one at a

time followed by a prompt for user ranking of the two melodies. In the MuseScore version, all of

the music samples are combined into one score followed by prompting the user for every melody

ranking consecutively.

A selection of music samples generated using this program can be found at

http://cs.oswego.edu/~kgray3/CSC466WorkSite/dt.html. Discussion of the results of

experimenting with the production of music samples can be found in the following section.

Reflections and Conclusions

There are three major issues I observed from my finished program. The first problem is

the “user hostile” nature of the user interface. The program should not rely on some other

third-party program, like EasyABC or MuseScore, for music playback – all of this should be

handled within the program itself. This could be further improved with the implementation of a

user-friendly GUI for playing back the music samples.

The next significant problem is user fatigue. Having the user rank all of the music

samples in a population every generation is infeasible. I tried to mitigate some of this by

alternating which generations a user ranked, but it still made for a tiresome experience. Luckily,

researchers have found solutions to alleviate user fatigue resulting from interactive genetic

algorithms. One solution involves using clustering and similarity metrics to determine which

http://cs.oswego.edu/~kgray3/CSC466WorkSite/dt.html
http://cs.oswego.edu/~kgray3/CSC466WorkSite/dt.html


music sample a user ranks; the sample that is most centric to the cluster is chosen for the user to

rank each generation (Fernández and Vico 553). Neural networks can also be used to

approximate some of the fitness rankings (Farooq and Siddique 48). One of the more difficult

solutions to implement is to eliminate the task of users having to manually rank each sample

altogether by monitoring the user’s brain activity as ranking of fitness (50). This method is

definitely more obscure in terms of plausibility, but it sounds incredibly fascinating to

experiment with.

The third major problem I encountered is the “variation versus convergence conundrum.”

In this case, convergence represents a lack of variation in the individuals of a genetic algorithm,

not convergence to the most fit sample. While conducting experiments in which I changed

different variables of the genetic algorithm, I ran into issues where either too much variance or

not enough variance was occurring. Too much variance occurred when I gave the user a break

from ranking individuals in a population every one or two generations. Too little variance

occurred in smaller populations – I ended up having to rank copies of the same individual

repeatedly in experiments of that nature. Both of these problems share one great detriment: they

negatively impact the user’s collaborative impact on the final music sample. There is also an

element of psychology that comes into play with this conundrum; I had a couple trials where I

mistakenly thought the samples had converged, when, in reality, the samples were long enough

where I did not notice mutations.



The aforementioned fixes to the user fatigue problems could help immensely with

mitigating the variance versus convergence conundrum. It may be worthwhile to use some other

algorithmic composition method to generate individuals in the style of a given individual or

individuals – perhaps, by using a hidden Markov model – for mutation and crossover. Bell

proposes a similar idea, instead using linear algebra to perform transformations on the matrices

of the Markov chains of the two best-ranked individuals to build the next generation of

individuals in the style of the parent music samples (Bell 102).

Overall, I am very satisfied with my work on this project. I went into it unsure of what

would happen and came out of it with a finished program that enhanced my understanding of

what it takes to create a collaborative algorithmic composition program. It is daunting to take on

an experimental project that may not work out in the end. Ultimately, I found the

experimentation to be incredibly rewarding, especially since I believe there is a need to create

algorithmic composition machines that offer a collaborative experience for humans, rather than

subverting their musicianship completely. Although I am hesitant to declare that this system

offers an optimal collaborative experience, this project inspired me with some other ideas in

designing collaborative algorithmic composition systems. I would love to look into more

collaborative machines in the future.



Bibliography

Works Cited

Anders, Torsten, and Eduardo R. Miranda. “Constraint Programming Systems for Modeling

Music Theories and Composition.” ACM Computing Surveys, vol. 43, no. 4, Oct. 2011,

pp. 1–38. ACM Digital Library, https://dl.acm.org/doi/10.1145/1978802.1978809.

Accessed 3 May 2023.

Bell, Chip. “Algorithmic Music Composition Using Dynamic Markov Chains and Genetic

Algorithms.” Journal of Computing Sciences in Colleges, vol. 27, no. 2, Dec. 2011, pp.

99–107. ACM Digital Library, https://dl.acm.org/doi/10.5555/2038836.2038850.

Accessed 3 May 2023.

Bishop, Kelly. “Is AI Music a Genuine Threat to Real Artists?” VICE, 16 Feb. 2023,

https://www.vice.com/en/article/88qzpa/artificial-intelligence-music-industry-future.

Burton, Anthony R., and Tanya Vladimirova. "Generation of musical sequences with genetic

techniques." Computer Music Journal, vol. 23, no. 4, winter 1999, pp. 59+. Gale

Academic OneFile,

link.gale.com/apps/doc/A168282960/AONE?u=oswego&sid=bookmark-AONE&xid=e7

ebe010. Accessed 3 May 2023.

https://www.vice.com/en/article/88qzpa/artificial-intelligence-music-industry-future
https://www.vice.com/en/article/88qzpa/artificial-intelligence-music-industry-future


Edwards, Michael. “Algorithmic Composition: Computational Thinking in Music.”

Communications of the ACM, vol. 54, no. 7, 2011, pp. 58–67. ACM Digital Library,

https://dl.acm.org/doi/pdf/10.1145/1965724.1965742. Accessed 3 May 2023.

Farooq, Humera, and Muhummad Tariq Siddique. “A Comparative Study on User Interfaces of

Interactive Genetic Algorithm.” Procedia Computer Science, vol. 32, 2014, pp. 45–52.,

https://doi.org/https://doi.org/10.1016/j.procs.2014.05.396.

Fernández, Jose David, and Francisco Vico. “AI Methods in Algorithmic Composition: A

Comprehensive Survey.” AI Methods in Algorithmic Composition: A Comprehensive

Survey, vol. 48, no. 1, 1 Oct. 2013, pp. 513–582. ACM Digital Library,

https://dl.acm.org/doi/10.5555/2591248.2591260. Accessed 3 May 2023.

Maurer, John A. A Brief History of Algorithmic Composition, Stanford, Mar. 1999,

https://ccrma.stanford.edu/~blackrse/algorithm.html.

https://doi.org/https://doi.org/10.1016/j.procs.2014.05.396
https://doi.org/https://doi.org/10.1016/j.procs.2014.05.396
https://ccrma.stanford.edu/~blackrse/algorithm.html
https://ccrma.stanford.edu/~blackrse/algorithm.html

