Task 10 — Population-Based Mutation Methods

This task adds methods to help perform mutation in preparation for dealing with populations for
the genetic algorithm. Task 3 already implemented mutation at the music individual level, so all
that needed to be added in this task were the constant for percent mutation and the maybe-mutate
method. Now, mutation can occur based on a percent probability.

Demo

**Red highlighting denotes mutated notes

[5]> (demo--maybe-mutate)
F/2 C2 F2 C2 D G/2

F/2 C2 F2 C2 D G/2
F/2 C2 F2 C2 D G/2
F/2 C2 F2 C2 D G/2
F/2 C2 F2 C2 D G/2
*
F/2 C2 G2 C2 D G/2
F/2 C2 G2 C2 D G/2
F/2 C2 G2 C2 D G/2
F/2 C2 G2 C2 D G/2
*
F/2 F G2 C2 D G/2
F/2 F G2 C2 D G/2

*

F/2 F G2 C2 C/2 G/2

*

F/2 F G2 C2 G/2 G/2

F/2 F G2 C2 G/2 G/2

F/2 F G2 C2 G/2 G/2

F/2 F G2 C2 G/2 G/2

F/2 F G2 C/2 G/2 G/2

F/2 F G2 C/2 G/2 G/2

F/2 F G2 C/2 G/2 G/2

F/2 F G2 G/2 G/2 G/2

F/2 F B/2 G/2 G/2 G/2

Demo Code

demo--maybe-mutate ()
m (generate-music-sample (random 100)))
display-melodyl m)

terpri)

(
(
(
(

(x 20)
(display-melodyl m)
(if (maybe-mutate m) (princ " *"))

(terpri)

Code

pc-m 50)

maybe-mutate ((m music))

<= (+ 1 (random 100)

(mutation m)

