
Task 10 – Population-Based Mutation Methods

This task adds methods to help perform mutation in preparation for dealing with populations for
the genetic algorithm. Task 3 already implemented mutation at the music individual level, so all
that needed to be added in this task were the constant for percent mutation and the maybe-mutate
method. Now, mutation can occur based on a percent probability.

Demo

**Red highlighting denotes mutated notes

[5]> (demo--maybe-mutate)
F/2 C2 F2 C2 D G/2

F/2 C2 F2 C2 D G/2

F/2 C2 F2 C2 D G/2

F/2 C2 F2 C2 D G/2

F/2 C2 F2 C2 D G/2
*
F/2 C2 G2 C2 D G/2

F/2 C2 G2 C2 D G/2

F/2 C2 G2 C2 D G/2

F/2 C2 G2 C2 D G/2
*
F/2 F G2 C2 D G/2

F/2 F G2 C2 D G/2
*
F/2 F G2 C2 C/2 G/2
*
F/2 F G2 C2 G/2 G/2

F/2 F G2 C2 G/2 G/2

F/2 F G2 C2 G/2 G/2

F/2 F G2 C2 G/2 G/2
*
F/2 F G2 C/2 G/2 G/2

F/2 F G2 C/2 G/2 G/2

F/2 F G2 C/2 G/2 G/2
*
F/2 F G2 G/2 G/2 G/2
*
F/2 F B/2 G/2 G/2 G/2

Demo Code

; Demo method for maybe-mutate. Shows whether a music individual

; mutates or not by denoting melody1 with an * for mutation.

; Only Melody1 is shown because mutation affects both melodies,

; so for demo purposes we can show one.

(defmethod demo--maybe-mutate ()

(setf m (generate-music-sample (random 100)))

(display-melody1 m)

(terpri)

(dotimes (x 20)

(display-melody1 m)

(if (maybe-mutate m) (princ " *"))

(terpri)

)

)

Code

; ----------Population Mutation Methods----------

; percentage of mutation (set at 50%)

(defconstant *pc-m* 50)

; Mutates music samples based on *pc-m* probability

(defmethod maybe-mutate ((m music))

(cond

((<= (+ 1 (random 100)) *pc-m*)

(mutation m)

t

)

(t

nil

)

)

)

