
CSC344 Mhan Hein Khant

 2/14/2023 page 1

Problem Set Assignment 1 - BNF
The goal of this project is to illustrate how a BNF grammar may be organized and improved to produce a

practical or relevant programming language. A "start" symbol, sets of tokens, non-terminal symbols, and

productions make up BNF grammar. There will be demonstration and testing of the grammar rules for many

tiny languages with different syntax and restrictions.

Problem 1: Laughter

<A> ::= | <C>

 ::= HA HA <C> | HA HA | HA HA <empty>

<C> ::= HEE | HEE <D> | HEE <empty>

<D> ::= HEE HEE | HEE HEE <D> | HEE HEE <empty>

• Parse Tree for HA HA HEE HEE HEE HEE HEE HA HA

CSC344 Mhan Hein Khant

 2/14/2023 page 2

• Parse Tree for HEE HA HA HA HA HA HA

CSC344 Mhan Hein Khant

 2/14/2023 page 3

Problem 2: SQN (Special Quaternary Numbers)

<A> ::= 0 | | <C> | <D> | <empty>
 ::= 1 <A> | 1 <C> | 1 <D> | <empty>
<C> ::= 2 <A> | 2 | 2 <D> | <empty>
<D> ::= 3 <A> | 3 | 3 <C> | <empty>

• Parse Tree for 0

• Parse Tree for 132

CSC344 Mhan Hein Khant

 2/14/2023 page 4

Problem 3: BXR

<sRT> ::= (and <val>) | (or <val>) | <nST> | <oST>
<val> ::= #t <val> | #f <val> | <nCT> | <oCT> | #t | #f
<nCT> ::= (not #t) <sRT> | (not #f) <sRT> | (not #t)
<val> | (not #f) <val>
<oCT> ::= (and <val>) | (or <val>)
<nST> ::= (not #t) | (not #f)
<oST> ::= (and #t) | (or #t) | (and #f) | (or #f)

• Parse Tree for (or #t)

CSC344 Mhan Hein Khant

 2/14/2023 page 5

• Parse Tree for (and (not #t) #f)

CSC344 Mhan Hein Khant

 2/14/2023 page 6

Problem 4: LSS (Line Segment Sequences)

<A> ::= (<dis> <ang> <color>) <A> | <empty>
<dis> ::= <num>
<ang> ::= <num>
<color> ::= RED | BLACK | BLUE

• Parse Tree for (120 95 BLACK)

CSC344 Mhan Hein Khant

 2/14/2023 page 7

• Parse Tree for (70 180 BLUE) (770 187 RED) (191 145 RED)

CSC344 Mhan Hein Khant

 2/14/2023 page 8

Problem 5: M-Lines

<S> ::= <seQ> | <pST> | <pSD> | <pCT>
<seQ> ::= PLAY | REST | PLAY <S> | REST <S>
<pCT> ::= RP <S> LP <S> | LP <S> RP <S> | S2 <S> X2 <S> | X2 <S> S2
<S> | S3 <S> X3 <S> | X3 <S> S3 <S>
<pSD> ::= RP <S> LP | LP <S> RP | S2 <S> X2 | X2 <S> S2 | S3 <S> X3 |
X3 <S> S3
<pST> ::= RP LP | LP RP | S2 X2 | X2 S2 | S3 X3 | X3 S3

• Parse Tree for LP PLAY RP PLAY

CSC344 Mhan Hein Khant

 2/14/2023 page 9

• Parse Tree for PLAY RP S2 PLAY PLAY X2 LP X2 PLAY S2

CSC344 Mhan Hein Khant

 2/14/2023 page 10

Problem 6: BNF?

Backus-Naur Form, or BNF as it is commonly known, is a system designed to write grammars for

programming languages. To understand BNF, one must understand the 4 components that make it up. The

first are the “tokens” that are a part of the language according to the definition. Secondly are the symbols

that aren’t technically a part of the language but are still essential to its definition. Thirdly, the

productions that convert the non-terminal symbols into a string of tokens and nonterminals. Lastly is the

start symbol, a nonterminal symbol, which signifies the illustration of the language.

