Task 2: Creating and Displaying a standard deck of playing cards

About this task:

The purpose of this task was simply to create cards of the four suites that comprise of a standard playing
deck of cards. The deck is organized with aces at the beginning of each suit due to them being low cards
in GOPS.

Demo:
[8]> (rund)

>>> Running Task 2 Demo.

>>> Testing: create-deck

--- Deck =

((ACE . CLUB) (2. CLUB) (3 . CLUB) (4 . CLUB) (5. CLUB) (6 . CLUB) (7 . CLUB) (8 . CLUB) (9 . CLUB) (10.
CLUB) (JACK . CLUB)

(QUEEN . CLUB) (KING . CLUB) (ACE . DIAMOND) (2 . DIAMOND) (3 . DIAMOND) (4 . DIAMOND) (5 .
DIAMOND) (6 . DIAMOND) (7 . DIAMOND)

(8 . DIAMOND) (9 . DIAMOND) (10 . DIAMOND) (JACK . DIAMOND) (QUEEN . DIAMOND) (KING .
DIAMOND) (ACE . SPADE) (2 . SPADE) (3 . SPADE)

(4 . SPADE) (5 . SPADE) (6 . SPADE) (7 . SPADE) (8 . SPADE) (9 . SPADE) (10 . SPADE) (JACK . SPADE)
(QUEEN . SPADE) (KING . SPADE)

(ACE . HEART) (2 . HEART) (3 . HEART) (4 . HEART) (5 . HEART) (6 . HEART) (7 . HEART) (8 . HEART) (9.
HEART) (10 . HEART) (JACK . HEART)

(QUEEN . HEART) (KING . HEART))
--- Number of cards in deck = 52
NIL

[9]>

Code for the Demo:

(defun demo--task2 ()
(format t ">>> Running Task 2 Demo. ~%")
(demo--create-deck)
nil

)

(defun demo--create-deck ()
(format t ">>> Testing: create-deck ~%")

(setf deck (create-deck))

(format t "--- Deck = ~A~%" deck)

(format t "--- Number of cards in deck = ~A~%" (length deck
))

nil

)
Code
; Task 2:

; Creating and Displaying a standard deck of cards.

(defun create-cards (suite &aux ranks)

(setf ranks '"(ace 2 3 4 5 6 7 8 9 10 jack gueen king))
(setf suite-duplicates (duplicate (length ranks) suite))

(mapcar #'cons ranks suite-duplicates)

)

(defun create-deck ()

(mapcan #'create-cards '(club diamond spade heart))

)

; Task 2 Demos

(defun demo--task2 ()
(format t ">>> Running Task 2 Demo. ~%")
(demo--create-deck)
nil

)

(defun demo--create-deck ()
(format t ">>> Testing: create-deck ~%")

(setf deck (create-deck))

(format t "--- Deck = ~A~%" deck)
(format t "--- Number of cards in deck = ~A~%" (length deck

nil

; Task 2 Helper functions

(defun duplicate (n lo)

(cond

(snoc lo (duplicate (- n 1) lo))

(defun snoc (o 1)
(cond
((null 1)
(list o)
)
(t
(cons (car 1) (snoc o (cdr 1)))

)

