
Task 5: Heuristic GOPS Machine

Abstract: Code was split up into multiple files as to not make the AI_Project file unwieldy. I moved tasks

2 through 4 into a different file (first_iter.l) that is not included here. The later tasks will be included in

the file sec_iter.l

Game.l file contains code to run the game mostly re-writing the code from previous tasks to use CLOS.

Hm_rules.l file contains the heuristics. Currently there are two rules the first being the random machine

and the second is a machine that plays the same card as the prize card.

Player.l contains the code for the current model of the players. Currently only machine players are

modeled. Later I will add a human player model so a person can play against a machine.

Demos.l file contains the demo code.

Sec_iter.l contains more code for task 5. Mainly to the function to define a heuristic machine vs a

heuristic machine. (Matching-card machine vs Random-machine).

Demo:

[3]> (demo--task5)

>>> Demo for task 5 <<<

Name of machine 1? m1

Name of machine 2? m2

>>>--------- Round: 1 ---------<<<

--- Prize Card = (ACE . HEART)

--- M1's Card = (ACE . DIAMOND)

--- M2's Card = (9 . SPADE)

--- M2 won ---

--- M1 Score is: 0.0

--- M2 Score is: 1.0

>>>--------- Round: 2 ---------<<<

--- Prize Card = (10 . HEART)

--- M1's Card = (10 . DIAMOND)

--- M2's Card = (6 . SPADE)

--- M1 won ---

--- M1 Score is: 10.0

--- M2 Score is: 1.0

>>>--------- Round: 3 ---------<<<

--- Prize Card = (9 . HEART)

--- M1's Card = (9 . DIAMOND)

--- M2's Card = (2 . SPADE)

--- M1 won ---

--- M1 Score is: 19.0

--- M2 Score is: 1.0

>>>--------- Round: 4 ---------<<<

--- Prize Card = (3 . HEART)

--- M1's Card = (3 . DIAMOND)

--- M2's Card = (KING . SPADE)

--- M2 won ---

--- M1 Score is: 19.0

--- M2 Score is: 4.0

>>>--------- Round: 5 ---------<<<

--- Prize Card = (5 . HEART)

--- M1's Card = (5 . DIAMOND)

--- M2's Card = (ACE . SPADE)

--- M1 won ---

--- M1 Score is: 24.0

--- M2 Score is: 4.0

>>>--------- Round: 6 ---------<<<

--- Prize Card = (2 . HEART)

--- M1's Card = (2 . DIAMOND)

--- M2's Card = (8 . SPADE)

--- M2 won ---

--- M1 Score is: 24.0

--- M2 Score is: 6.0

>>>--------- Round: 7 ---------<<<

--- Prize Card = (KING . HEART)

--- M1's Card = (KING . DIAMOND)

--- M2's Card = (QUEEN . SPADE)

--- M1 won ---

--- M1 Score is: 37.0

--- M2 Score is: 6.0

>>>--------- Round: 8 ---------<<<

--- Prize Card = (4 . HEART)

--- M1's Card = (4 . DIAMOND)

--- M2's Card = (7 . SPADE)

--- M2 won ---

--- M1 Score is: 37.0

--- M2 Score is: 10.0

>>>--------- Round: 9 ---------<<<

--- Prize Card = (7 . HEART)

--- M1's Card = (7 . DIAMOND)

--- M2's Card = (10 . SPADE)

--- M2 won ---

--- M1 Score is: 37.0

--- M2 Score is: 17.0

>>>--------- Round: 10 ---------<<<

--- Prize Card = (8 . HEART)

--- M1's Card = (8 . DIAMOND)

--- M2's Card = (4 . SPADE)

--- M1 won ---

--- M1 Score is: 45.0

--- M2 Score is: 17.0

>>>--------- Round: 11 ---------<<<

--- Prize Card = (QUEEN . HEART)

--- M1's Card = (QUEEN . DIAMOND)

--- M2's Card = (5 . SPADE)

--- M1 won ---

--- M1 Score is: 57.0

--- M2 Score is: 17.0

>>>--------- Round: 12 ---------<<<

--- Prize Card = (JACK . HEART)

--- M1's Card = (JACK . DIAMOND)

--- M2's Card = (3 . SPADE)

--- M1 won ---

--- M1 Score is: 68.0

--- M2 Score is: 17.0

>>>--------- Round: 13 ---------<<<

--- Prize Card = (6 . HEART)

--- M1's Card = (6 . DIAMOND)

--- M2's Card = (JACK . SPADE)

--- M2 won ---

--- M1 Score is: 68.0

--- M2 Score is: 23.0

--- M1 won the game! ---

Name of machine 1? Rosie

Name of machine 2? Robert

>>>--------- Round: 1 ---------<<<

--- Prize Card = (4 . DIAMOND)

--- ROSIE's Card = (4 . HEART)

--- ROBERT's Card = (9 . SPADE)

--- ROBERT won ---

--- ROSIE Score is: 0.0

--- ROBERT Score is: 4.0

>>>--------- Round: 2 ---------<<<

--- Prize Card = (7 . DIAMOND)

--- ROSIE's Card = (7 . HEART)

--- ROBERT's Card = (10 . SPADE)

--- ROBERT won ---

--- ROSIE Score is: 0.0

--- ROBERT Score is: 11.0

>>>--------- Round: 3 ---------<<<

--- Prize Card = (6 . DIAMOND)

--- ROSIE's Card = (6 . HEART)

--- ROBERT's Card = (8 . SPADE)

--- ROBERT won ---

--- ROSIE Score is: 0.0

--- ROBERT Score is: 17.0

>>>--------- Round: 4 ---------<<<

--- Prize Card = (3 . DIAMOND)

--- ROSIE's Card = (3 . HEART)

--- ROBERT's Card = (4 . SPADE)

--- ROBERT won ---

--- ROSIE Score is: 0.0

--- ROBERT Score is: 20.0

>>>--------- Round: 5 ---------<<<

--- Prize Card = (JACK . DIAMOND)

--- ROSIE's Card = (JACK . HEART)

--- ROBERT's Card = (7 . SPADE)

--- ROSIE won ---

--- ROSIE Score is: 11.0

--- ROBERT Score is: 20.0

>>>--------- Round: 6 ---------<<<

--- Prize Card = (2 . DIAMOND)

--- ROSIE's Card = (2 . HEART)

--- ROBERT's Card = (5 . SPADE)

--- ROBERT won ---

--- ROSIE Score is: 11.0

--- ROBERT Score is: 22.0

>>>--------- Round: 7 ---------<<<

--- Prize Card = (8 . DIAMOND)

--- ROSIE's Card = (8 . HEART)

--- ROBERT's Card = (2 . SPADE)

--- ROSIE won ---

--- ROSIE Score is: 19.0

--- ROBERT Score is: 22.0

>>>--------- Round: 8 ---------<<<

--- Prize Card = (QUEEN . DIAMOND)

--- ROSIE's Card = (QUEEN . HEART)

--- ROBERT's Card = (3 . SPADE)

--- ROSIE won ---

--- ROSIE Score is: 31.0

--- ROBERT Score is: 22.0

>>>--------- Round: 9 ---------<<<

--- Prize Card = (ACE . DIAMOND)

--- ROSIE's Card = (ACE . HEART)

--- ROBERT's Card = (QUEEN . SPADE)

--- ROBERT won ---

--- ROSIE Score is: 31.0

--- ROBERT Score is: 23.0

>>>--------- Round: 10 ---------<<<

--- Prize Card = (10 . DIAMOND)

--- ROSIE's Card = (10 . HEART)

--- ROBERT's Card = (6 . SPADE)

--- ROSIE won ---

--- ROSIE Score is: 41.0

--- ROBERT Score is: 23.0

>>>--------- Round: 11 ---------<<<

--- Prize Card = (KING . DIAMOND)

--- ROSIE's Card = (KING . HEART)

--- ROBERT's Card = (KING . SPADE)

--- The round ended in a draw ---

--- ROSIE Score is: 47.5

--- ROBERT Score is: 29.5

>>>--------- Round: 12 ---------<<<

--- Prize Card = (5 . DIAMOND)

--- ROSIE's Card = (5 . HEART)

--- ROBERT's Card = (ACE . SPADE)

--- ROSIE won ---

--- ROSIE Score is: 52.5

--- ROBERT Score is: 29.5

>>>--------- Round: 13 ---------<<<

--- Prize Card = (9 . DIAMOND)

--- ROSIE's Card = (9 . HEART)

--- ROBERT's Card = (JACK . SPADE)

--- ROBERT won ---

--- ROSIE Score is: 52.5

--- ROBERT Score is: 38.5

--- ROSIE won the game! ---

Name of machine 1? M101

Name of machine 2? M202

>>>--------- Round: 1 ---------<<<

--- Prize Card = (2 . DIAMOND)

--- M101's Card = (2 . HEART)

--- M202's Card = (4 . CLUB)

--- M202 won ---

--- M101 Score is: 0.0

--- M202 Score is: 2.0

>>>--------- Round: 2 ---------<<<

--- Prize Card = (9 . DIAMOND)

--- M101's Card = (9 . HEART)

--- M202's Card = (3 . CLUB)

--- M101 won ---

--- M101 Score is: 9.0

--- M202 Score is: 2.0

>>>--------- Round: 3 ---------<<<

--- Prize Card = (10 . DIAMOND)

--- M101's Card = (10 . HEART)

--- M202's Card = (8 . CLUB)

--- M101 won ---

--- M101 Score is: 19.0

--- M202 Score is: 2.0

>>>--------- Round: 4 ---------<<<

--- Prize Card = (ACE . DIAMOND)

--- M101's Card = (ACE . HEART)

--- M202's Card = (10 . CLUB)

--- M202 won ---

--- M101 Score is: 19.0

--- M202 Score is: 3.0

>>>--------- Round: 5 ---------<<<

--- Prize Card = (JACK . DIAMOND)

--- M101's Card = (JACK . HEART)

--- M202's Card = (QUEEN . CLUB)

--- M202 won ---

--- M101 Score is: 19.0

--- M202 Score is: 14.0

>>>--------- Round: 6 ---------<<<

--- Prize Card = (QUEEN . DIAMOND)

--- M101's Card = (QUEEN . HEART)

--- M202's Card = (2 . CLUB)

--- M101 won ---

--- M101 Score is: 31.0

--- M202 Score is: 14.0

>>>--------- Round: 7 ---------<<<

--- Prize Card = (7 . DIAMOND)

--- M101's Card = (7 . HEART)

--- M202's Card = (7 . CLUB)

--- The round ended in a draw ---

--- M101 Score is: 34.5

--- M202 Score is: 17.5

>>>--------- Round: 8 ---------<<<

--- Prize Card = (3 . DIAMOND)

--- M101's Card = (3 . HEART)

--- M202's Card = (9 . CLUB)

--- M202 won ---

--- M101 Score is: 34.5

--- M202 Score is: 20.5

>>>--------- Round: 9 ---------<<<

--- Prize Card = (KING . DIAMOND)

--- M101's Card = (KING . HEART)

--- M202's Card = (KING . CLUB)

--- The round ended in a draw ---

--- M101 Score is: 41.0

--- M202 Score is: 27.0

>>>--------- Round: 10 ---------<<<

--- Prize Card = (4 . DIAMOND)

--- M101's Card = (4 . HEART)

--- M202's Card = (ACE . CLUB)

--- M101 won ---

--- M101 Score is: 45.0

--- M202 Score is: 27.0

>>>--------- Round: 11 ---------<<<

--- Prize Card = (8 . DIAMOND)

--- M101's Card = (8 . HEART)

--- M202's Card = (5 . CLUB)

--- M101 won ---

--- M101 Score is: 53.0

--- M202 Score is: 27.0

>>>--------- Round: 12 ---------<<<

--- Prize Card = (6 . DIAMOND)

--- M101's Card = (6 . HEART)

--- M202's Card = (JACK . CLUB)

--- M202 won ---

--- M101 Score is: 53.0

--- M202 Score is: 33.0

>>>--------- Round: 13 ---------<<<

--- Prize Card = (5 . DIAMOND)

--- M101's Card = (5 . HEART)

--- M202's Card = (6 . CLUB)

--- M202 won ---

--- M101 Score is: 53.0

--- M202 Score is: 38.0

--- M101 won the game! ---

>>> Finished Demo for task 5 <<<

NIL

Code AI_Project.l File:

;--

; Name: AI Project: Heuristic Machine

; for the

; Game of Pure Strategy

; File: AI_Project.l

; Description: A program that will feature Heuristic Machines to play

; GOPS.

;--

;---

;

; Load code from files

; helpers - helper functions

; demo - demos for the tasks

;

;

(defun start (&optional num)

 (format t ">>> Loading files.~%")

 (load "library/helpers.l")

 (load "library/demos.l")

 (load "library/player.l")

 (load "library/hm_rules.l")

 (format t ">>> Finished loading.~%")

 (format t ">>> type (rund) to run all demos.~%")

 (format t ">>> type (demo--task#) to demo a specific task.~%")

 (cond

 ((equal num 1)

 (format t ">>> Loading first four tasks~%")

 (load "library/first_iter.l")

)

 (t

 (format t ">>> Loading CLOS objects~%")

 (load "library/game.l")

 (load "library/sec_iter.l")

)

)

 nil

)

Code sec_iter.l File:

;--

;

; Task 5:

;

; set-up two machines to play

;

;--

(defun hm-hm-game (&aux player1 player2 p1name p2name game)

 (princ "Name of machine 1? ") (setf p1name (read))

 (princ "Name of machine 2? ") (setf p2name (read))

 (setf player1 (make-instance 'h-machine-player :name p1name))

 (setf player2 (make-instance 'h-machine-player :name p2name))

 (set-machine-rules player1 'hm-rule01-stg01)

 (setf game

 (make-instance 'game

 :player1 player1

 :player2 player2

)

)

 (init-cards game)

 game

)

Code demos.l File:

;---

;

;

;

; Task 5 Demo

;

;

(defun demo--task5 ()

 (format t ">>> Demo for task 5 <<< ~%")

 (setf g (hm-hm-game))

 (play g)

 (setf g (hm-hm-game))

 (play g)

 (setf g (hm-hm-game))

 (play g)

 (format t ">>> Finished Demo for task 5 <<< ~%")

 nil

)

Code hm_rules.l File:

;--

;

; Task 5:

;

; Heuristic rules for the machine

;

;--

; format for arguments is take value of the card (number) and the

machine

; player's hand

; default rule is random.

; value will be unused in random as it is not needed.

(defun random-rules (value hand (p player) &aux my-card)

 (setf my-card (a-random-card hand p))

 ;(display-hand p)

 my-card

)

;supporting random rules

(defun a-random-card (hand (p player) &aux card number clcr)

 (setf clcr (get-cards-left))

 (setf number (+ (get-random-number clcr) 1))

 ;(format t "--- Number = ~A~%" number)

 (setf card (select (- number 1) hand))

 (display-card card p)

 card

)

; Used by the players to pick a card from the cards left.

; After the round is over the hand shrinks. This tells us

; How many cards are left to pick from.

; Formatted so if one is a number from the random player

; the card picked will be the first element from the list

; instead of the second.

(defun get-cards-left (&aux round cards-left)

 (setf round *current-round*)

 (setf cards-left (- 14 *current-round*))

 ;(format t "--- Cards-left = ~A~%" cards-left)

 cards-left

)

; simple heuristic rule to pick the card

; Pick the card that has the same value as the prize card

(defun hm-rule01-stg01 (value hand (p player) &aux my-card number

)

 (setf my-card (select 0 hand))

; (format t "--- Value: ~A~%" value)

; (format t "--- Hand: ~A~%" hand)

; (format t "--- My-card: ~A~%" my-card)

 (dotimes (i (get-cards-left))

 (setf my-card (select i hand))

 (cond

 ((equal (value-of my-card) value)

 (display-card my-card p)

 (return-from hm-rule01-stg01 my-card)

)

)

)

; my-card

)

Code player.l File:

;--

;

; Task 5:

; Infrastructure

; Modelling a player

;

;--

(defclass player ()

 (

 (name :accessor player-name :initarg :name)

 (hand :accessor player-hand :initarg :hand :initform '())

 (winnings :accessor player-winnings :initarg :winnings :initform

'())

 (score :accessor player-score :initarg :score :initform 0.0)

)

)

(defclass h-machine-player (player)

 (

 (rules :accessor h-machine-player-rules :initarg :rules :initform

'random-rules)

 ;(hand :accessor h-machine-player-hand :initarg :hand :initform

'())

)

)

(defmethod display ((p player))

 (princ "< Player Name = ")

 (prin1 (player-name p))

 (princ " >")

 (terpri)

)

(defmethod display-card ((p player) card)

 (format t "--- ~A's card: ~A ~A's score: ~A ~%" (player-name p)

card (player-name p) (player-score p))

)

(defmethod display-hand ((hm h-machine-player))

 (princ "< My hand is: ")

 (prin1 (player-hand hm))

 (princ " >")

 (terpri)

)

(defmethod set-machine-rules ((hm h-machine-player) hm-rules)

 (setf (h-machine-player-rules hm) hm-rules)

)

(defmethod set-hand ((p player) p-hand)

 (setf (player-hand p) p-hand)

)

(defmethod set-winnings ((p player) value)

 (setf (player-winnings p) (cons value (player-winnings p)))

)

(defmethod set-score ((p player) &optional draw-total)

 (setf (player-score p) (+ (sum (player-winnings p)) draw-

total))

)

(defmethod get-score ((p player))

 (player-score p)

)

;--

;

;

; Playing a card

;

;

;--

(defmethod play-card ((p h-machine-player) p-card &aux value card

)

 (setf value (value-of p-card))

 (setf card (funcall (h-machine-player-rules p) value (player-

hand p) p))

 card

)

Code game.l File:

;--

;

; Task 5:

; Infrastructure

; Setup a game

;

;--

(defclass game ()

 (

 (player1 :accessor game-player1 :initarg :player1)

 (player2 :accessor game-player2 :initarg :player2)

)

)

;--

;

;

;

; Class Functions

;

;--

(defmethod play ((g game))

 (loop

 (get-prize-card)

 (play-round g)

 (if (game-over-p g) (return-from play (wind-up-game g)))

)

)

(defmethod wind-up-game ((g game))

 (display-results g)

 nil

)

;--

;

;

;

; Round Functions

;

;--

; set globals, deal the cards to the hands and shuffle the prize suite

(defmethod init-cards ((g game))

 (set-globals)

 (deal-cards (game-player1 g) (game-player2 g))

 (shuffle-suite)

 nil

)

(defmethod play-round ((g game))

 (display-current-round)

 (display-prize-card *prize-card*)

; (display-hand (game-player1 g))

; (display-hand (game-player2 g))

 (play-cards (game-player1 g) (game-player2 g))

; (display-hand (game-player1 g))

; (display-hand (game-player2 g))

 (display-scores g (sum-draw-winnings))

 (setf *current-round* (+ *current-round* 1))

 nil

)

(defmethod game-over-p ((g game))

 (equal (length *prize-suite*) 0)

)

(defmethod who-won (card1 card2 prize-card (p1 player) (p2 player

) &aux val1 val2)

 (setf val1 (value-of card1))

 (setf val2 (value-of card2))

 (cond

 ((> val1 val2)

 (display-player1-won p1)

 (add-prize-to-player p1 prize-card)

)

 ((> val2 val1)

 (display-player2-won p2)

 (add-prize-to-player p2 prize-card)

)

 (t

 (round-winner-draw)

 (add-prize-draw prize-card)

)

)

 nil

)

;--

;

;

;

; Dealing Functions

;

;--

;---------------------------

;

; Declare gloabals

;

;

(defmethod set-globals ()

 (setf *prize-suite* '())

 (setf *prize-card* '())

 (setf *discard-suite* '())

 (setf *current-round* 1)

 (setf *deck* (create-deck))

 (setf *draw-winnings* '())

 nil

)

(defmethod create-deck ()

 (mapcan #'create-cards '(club diamond spade heart))

)

(defmethod deal-cards ((p1 player) (p2 player))

 (setf dealing (deal-order))

 (setf start-deal (start-card dealing))

 (set-hand p1 (set-of-cards start-deal 13 '()))

 (setf start-deal (start-card (list (select 1 dealing))))

 (set-hand p2 (set-of-cards start-deal 13 '()))

 (setf start-deal (start-card (list (select 2 dealing))))

 (setf *prize-suite* (set-of-cards start-deal 13 '()))

 (setf start-deal (start-card (list (select 3 dealing))))

 (setf *discard-suite* (set-of-cards start-deal 13 '()))

 (setf *deck* '())

 nil

)

(defmethod shuffle-suite ()

 (setf *prize-suite* (shuffle *prize-suite*))

 nil

)

(defmethod shuffle (suite &aux card s-suite)

 (cond

 ((equal suite nil)

 '()

)

 (t

 (setf card (pick suite))

 (setf s-suite (take-from card suite))

 (cons card (shuffle s-suite))

)

)

)

(defmethod remove-suite ()

 (setf *discard-suite* '())

)

;--

;

;

;

; Card Functions

;

;--

(defmethod create-cards (suite &aux ranks)

 (setf ranks '(ace 2 3 4 5 6 7 8 9 10 jack queen king))

 (setf suite-duplicates (duplicate (length ranks) suite))

 (mapcar #'cons ranks suite-duplicates)

)

(defmethod play-cards ((p1 player) (p2 player) &aux card1 card2

)

 (setf card1 (play-the-card p1))

 (setf card2 (play-the-card p2))

 (who-won card1 card2 *prize-card* p1 p2)

 (remove-cards card1 card2 p1 p2)

 nil

)

(defmethod play-the-card ((p player) &aux card)

 (setf card (play-card p *prize-card*))

 card

)

(defmethod get-prize-card ()

 (set-prize-card (prize-card))

 nil

)

(defmethod remove-cards (card1 card2 (p1 player) (p2 player))

 (set-hand p1 (take-from card1 (player-hand p1)))

 (set-hand p2 (take-from card2 (player-hand p2)))

 nil

)

(defmethod set-of-cards (number length location)

 (cond

 ((equal length 0)

 location

)

 (t

 (set-of-cards (+ number 1) (- length 1) (snoc (get-card

number) location))

)

)

)

(defmethod get-card (number)

 (select number *deck*)

)

(defmethod set-prize-card (card)

 (setf *prize-card* card)

)

(defmethod prize-card (&aux card)

 (setf card (top-card))

 (remove-top-card-from-prize-suite)

 card

)

(defmethod remove-top-card-from-prize-suite ()

 (setf *prize-suite* (take-from (top-card) *prize-suite*))

)

(defmethod top-card ()

 (select 0 *prize-suite*)

)

; gets the value of the card. Card is processed from (rank.suite).

; Returns a value for the rank

(defmethod value-of (card &aux part number)

 (setf part (car card))

 (cond

 ((equal part 'ace)

 (setf number 1)

)

 ((equal part 2)

 (setf number 2)

)

 ((equal part 3)

 (setf number 3)

)

 ((equal part 4)

 (setf number 4)

)

 ((equal part 5)

 (setf number 5)

)

 ((equal part 6)

 (setf number 6)

)

 ((equal part 7)

 (setf number 7)

)

 ((equal part 8)

 (setf number 8)

)

 ((equal part 9)

 (setf number 9)

)

 ((equal part 10)

 (setf number 10)

)

 ((equal part 'jack)

 (setf number 11)

)

 ((equal part 'queen)

 (setf number 12)

)

 ((equal part 'king)

 (setf number 13)

)

)

 number

)

;--

;

;

;

; Player Functions

;

;--

(defmethod add-prize-to-player ((p player) card)

 (set-winnings p (value-of card))

)

;--

;

;

;

; Draw Functions

;

;--

; Add the value of the prize card to the draw score to be summed

; and divided by 2 for each player.

; The score is a list that is summed after each round.

(defmethod add-prize-draw (card)

 (setf *draw-winnings* (cons (value-of card) *draw-winnings*))

 nil

)

(defmethod sum-draw-winnings (&aux score)

 (setf score (float (/ (sum *draw-winnings*) 2)))

 score

)

;--

;

;

;

; Display Functions

;

;--

; formating for nice display to the user.

(defmethod display-player1-won ((p player))

 (format t "--- ~A won --- ~%" (player-name p))

 nil

)

; formating for nice display to the user.

(defmethod display-player2-won ((p player))

 (format t "--- ~A won --- ~%" (player-name p))

 nil

)

; formating for nice display to the user.

(defmethod round-winner-draw ()

 (format t "--- The round ended in a draw --- ~%")

 nil

)

(defmethod display-card (card (p player))

 (format t "--- ~A's Card = ~A~%" (player-name p) card)

)

; calculate the score of each player and display the scores.

; Score is total rounds won (get value of the prize card add to total

)

; take the rounds ending in a draw then sum the draws and divide by 2.

; Giving each player half the points.

(defmethod display-scores ((g game) &optional draw)

 (set-score (game-player1 g) draw)

 (set-score (game-player2 g) draw)

 (format t "--- ~A Score is: ~A~%" (player-name (game-player1 g)

) (get-score (game-player1 g)))

 (format t "--- ~A Score is: ~A~%" (player-name (game-player2 g)

) (get-score (game-player2 g)))

 nil

)

; checks to see which player won the game. Total higher score wins.

(defun display-results ((g game))

 (cond

 ((> (get-score (game-player1 g)) (get-score (game-player2

g)))

 (format t "--- ~A won the game! --- ~%" (player-name (game-

player1 g)))

)

 ((> (get-score (game-player2 g)) (get-score (game-player1

g)))

 (format t "--- ~A won the game! --- ~%" (player-name (game-

player2 g)))

)

 (t

 (format t "--- The game ended in a draw. --- ~%")

)

)

 nil

)

