Tyler Cullen

2/11/2023

CSC 344 | Programming Languages
BNF Assignment 1

Abstract

This assignment is about Backus-Naur Form Grammar (BNF). During this assignment I was asked to
compose six different BNF grammars for the different languages given. This also included drawing
BNF parse trees and describing them in English in a straightforward, compelling manner. This
assignment will expand my knowledge on BNF grammar and parse trees so I can further understand

how languages and functions are described.

Problem 1 - Laughter

BNF Grammar:
Tokens: { HEE, HA }

Nonterminals = { Laughter, Ha, Hee, Hee-Extra }
Productions = The following set of rules:
< Laughter > :: = <Ha > | < Hee > | < Empty >
<Ha > :: = HA HA <Laughter>
< Hee > :: = HEE < Ha > | HEE HEE < Hee-Extra > | < Empty >
< Hee-Extra > :: = Hee Hee < Ha > | < Laughter>

Start Symbol: < Laughter >

Parse Tree Problem - :

-

i
:a < Laughter > |

#
:' <Ha=» }
_\.\- -/
o~ .
» N
i N = e “".,'
|{ HA) k HA |F < Laughter >)
-._\—_ Y. _J‘
| T
f/—-.
[=Heez= |
| /
L
.--"-f
- _
4 ™ 4
[HEE | [
B o N
'x
S

—
f,\

-

HEE

|. < Hee-Exira :-.

._\\|

/
"

HA HA HEE HEE HEE HEE HEE HA HA

Parse Tree - HEE HA HA HA HA HA HA

| <Laughter> |

< Hee >

< Haz>

'&HHHHHH'

< Ha=>

HA
< Laughter >

|: < Empty = :|

Problem 2 - Special Quaternary Numbers

Tokens: {0, 1, 2, 3}
Non-Terminals: { Quart_ Num, Zero, No-Zero, One, No-One, Two, No-Two, Three, No-Three }
Productions = The following set of rules
Quart_Num : : = < Zero > | < One > | < Two > | < Three >
Zero :: = 0 | < No-Zero >
No-Zero :: = < One > | < Two > | < Three > | < Empty >
One :: = 1| < No-One >
No-One :: = < Zero > | < Two > | < Three > | < Empty >
Two :: = 2| < No-Two >
No-Two :: = < Zero > | < One > | < Three > | < Empty >
Three :: = 3 | < Non-Three >
No-Three :: = < Zero > | < One > | < Two > | < Empty >

Starting Symbol: < Quart_Num >

Parse Tree - 0

f{:FIEILIEHI NLIH‘I“:\
_ Y,
o

f

| < Non-Zero :-/I
-\\

< Empty = |

A

/_\

Parse Tree - 132

[= Quart_MNum > |

1 < No-One =

= Threeg =

= MNo-Three =

{ < MNo-Two =
{ = Empty = |.

The reason 1223 is not in the language is because in the production set of rules for state < Two > it

Task 4 - Explain why 1223 is not in the language:

indicates the only other option is < No-Two > which does not allow for another 2 to be adjacent to

each other. Therefore 1223 is not in the language.

Problem 3 - BXR

Non-Terminals: { BXR, Ops, And, Or, Not, Bool }
Productions = The Following Set of Rules

<BXR >::= <Ops>| <Bool>|Empty

<Ops >::=<And>|<Or>| <Not >

< Not >::= (not < Bool >)

< And >::= (and <Bool >)| (and)

<Or > = (or<Bool>)|(or)

< Bool > ::= #t| #f | <BXR > | < Ops >
Starting Symbol: < BRX >

Parse Tree - (or #t)

[o)

#i i :
< Empty > :|

Parse Tree - (and (not #t) #f)

< BXR = :|

Problem 4 - LSS (Line Segment Sequences)

Non-Terminals: { LSS, Segment, Length, Angle, Color, Empty}
Productions = The Following Set of Rules

< LSS > ::= < LSS >|< Segment > | < Empty >

< Segment > ::= (< Length > < Angle > < Color >)

< Length > ::= (int

< Angle > ::= int

< Color > ::= BLACK) | RED) | BLUE) | < LSS >
Starting Symbol: < LSS >

Parse Tree - (120 95 BLACK))

<|l55>

< Segment >

f

< Colar =

<Empty = |

Parse Tree - (70 180 BLUE) (770 187 RED) (191 145 RED))

Problem S - M-Lines

Non-Terminals: { Lines, EvenSequence, Event, Sandwich }

Productions = The Following Set of Rules
< Lines > ::= < EventSequence > | < Empty >
< EventSequence> ::= < Event > | < Sequence > | < Event > < Sequence > |

<Sequence > < Event > | < Empty >
< Event > ::= PLAY < EventSequence > | REST < EventSequence >
< Sandwich > ::= RP < EventSequence > LP | LP < EventSequence > RP |
§2 < EventSequence > X2 | X2 < EventSequence > S2 |
§3 < EventSequence > X3 | X3 < EventSequence > S3

Starting Symbol: < Lines >

Parse Tree - LP PLAY RP PLAY

< Lines >

_/

GEventE‘-equence >

ent = |
o

=

< Sandwich >

| = EventSequence >
= Event =

= |

g

({ Empty :=>

< EventSequenc

10

Problem 6 - BNF?

BNF Otherwise known as Backus-Naur form is a type of notation that is issued to describe the syntax
of languages such as programming languages and instruction sets. It consists of a set of terminal
symbols, set of non terminal symbols and a set of production rules of the form. These symbols are then
used to describe the instructions or execution of a program often done using parse trees.

11

