Racket Assignment #2: Interactions, Definitions, Applications

What’s It All About?

This assignment affords you an opportunity to do some relatively simple Racket programming. You will perform
various interactions, write a number of function definitions, and engage in computational problem solving, bits of
which feature the reuse of code, imaginative constructions, and the reconfiguration of existing code.

Task 0: Template for Your Solution Document

Craft a template for your solution document for this programming assignment, one that is structured like the one
that I am providing along with this assignment.

Task 1: Interactins - Scrap of Tin

Working within the DrRacket PDE, do the following:

1. Mimic the demo presented in the “Arithmetic Expressions” subsection of the “Interactions” section of Racket
Lesson #1. Find a way to copy/paste the demo that you created into the appropriate location of your solution
document.

2. Mimic the demo presented in the “Solve a Simple Problem (Area of Scrap)” subsection of the “Interactions”
section of Racket Lesson #1. Find a way to copy/paste the demo that you created into the appropriate location
of your solution document.

3. Mimic the demo presented in the “Rendering an Image of the Problem Situation” subsection of the “Interac-
tions” section of Racket Lesson #1. Find a way to copy/paste the demo that you created into the appropriate
lecation of your solution document.

Task 2: Definitions - Inscribing/Circumscribing Circles/Squares

1. Establish a file called CirclesAndSquares.rkt in which to define some functions relating to circles and squares.

2. Within the Definitions buffer, write the definition of a function called cs to compute the side length of the
circumscribing square of a circle whose radius is given by the sole parameter to the function. Thus, for example:
(es5) =10, and (s 5.5) = 11.0. Test the function in the Interactions area.

3. Within the Definitions buffer, write the definition of a function called cc to compute the radius of the circum-
scribing circle of a square whose side length is given by the sole parameter to the function. Thus, for example
(rounding the results some): (cc 12) = 8.485, and (cc 17.2) = 12.162. Test the function in the Interactions
area.

4. Within the Definitions buffer, write the definition of a function called ic to compute the radius of the inscribing
circle of a square whose side length is given by the sole parameter to the function. Thus, for example: (ic 20
) = 10.0, and (ic 25) = 12.5. Test the function in the Interactions area.

5. Within the Definitions buffer, write the definition of a function called is to compute the side length of the
inscribing square of a circle whose radius is given by the sole parameter to the function. Thus, for example
(rounding the results some): (is 15) = 21.213, and (is 70.44) = 99.617. Test the function in the Interactions
area.

6. Within the Definitions buffer, write the definition of a function called cs-demo which draws a purple circum-
scribing square around a blue circle whose radius is given as the sole parameter of the function. Then create a
demo of this function by running the following form 3 times in the Interactions buffer: (cs-demo (random 50
150)). Arrange for this demo to appear in the appropriate location of your solutions document.

7. Within the Definitions buffer, write the definition of a function called cc-demo which draws a purple circum-
scribing circle around a blue square whose side length is given as the sole parameter of the function. Then
create a demo of this function by running the following form 3 times in the Interactions buffer: (cc-demo (
random 50 150)). Arrange for this demo to appear in the appropriate location of your solutions document.

8. Within the Definitions buffer, write the definition of a function called ic-demo which draws a purple inscribing
circle within a blue square whose side length is given as the sole parameter of the function. Then create a demo
of this function by running the following form 3 times in the Interactions buffer: (ic-demo (random 50 150)
). Arrange for this demo to appear in the appropriate location of your solutions document.

9. Within the Definitions buffer, write the definition of a function called is-demo which draws a purple inscribing
square within a blue circle whose radius is given as the sole parameter of the function. Then create a demo of
this function by running the following form 3 times in the Interactions buffer: (cs-demo (random 50 150)).
Arrange for this demo to appear in the appropriate location of your solutions document.

19. Copy/paste the definttions from the Defivitions area to the appropriate location in your solutions document.

Task 3: Inscribing/Circumscribing Images

1. Within CirclesAndSquares.rkt, write the definition of a function called image-1 taking one parameter that
corresponds to the side of a square, which paints an image consisting of a purple square corresponding to the
given side, inscribed by a cyan circle, inscribed by a purple square rotated 45 degrees, inscribed by a cyan
circle. Please see the accompanying demo for clarification. Furthermore, create your own demo that mimics
mine, knowing that the sizes of your images will probably differ from mine, even though, by requirement, you
will be typing in the same commands as you see in the demo. Finally, arrange for your demo to appear in
the appropriate location in your solutions document. Constraint: Use appropriate functions from the
previous task.

> (image-1 (random 200 300))

)
&

Vv

(image-1 (random 200 300))

a
(.

Vv

2. Within CirclesAndSquares.rkt, write the definition of a function called image-2 taking one parameter that
corresponds to the side of a square, which draws an image consisting of four nested red squares, where the
corners of each nested square touch the midpoints of the sides of its immediately containing square. Please
see the accompanying demo for clarification. Furthermore, create your own demo that mimics mine, knowing
that the sizes of your images will probably differ from mine, even though, by requirement, you will be typing
in the same commands as you see in the demo. Finally, arrange for your demo to appear in the appropriate
location in your solutions document. Constraint: Use appropriate functions from the previous task,
and some imaginative constructions.

> (_image-2 (random 200 300))

> (image-2 (random 200 300))

3. Within CirclesAndSquares.rkt, write the definition of a function called Warholesque-image taking one pa-
rameter that corresponds to the side of a “square canvas,” which paints a 2x2 checkerboard of randomly colored
two-tone images like that generated by the image-1 function, except for colors, in which black borders of width
4 provide the “finishing touch” for the “checkerboard.” Please see the accompanying demo for clarification.
Furthermore, create your own demo that mimics mine, knowing that the colors of your images will differ from
mine, even though, by requirement, you will be typing in the same commands as you see in the demo. Finally,
arrange for your demo to appear in the appropriate location in your solutions document.

> (warholesque-image 300)

> (warholesque—image 300)

4. Copy/paste the definitions that you wrote for this task to the appropriate location in your solutions document.

Task 4: Permutations of Randomly Colored Stacked Dots

Programming constraint: For this part of your assignment, your are not permitted to use any form
of repetition (recursion/iteration) or any form of conditional statement (e.g., if, cond).

Prior commencing with the work on this task, please consider the following demo:

Language: racket, with debugging; memory limit: 128 MB.

Welcome to DrRacket, version 8.1 [cs]. \
> (tile "black" "cornflowerblue" "cyan" "teal")

> (tile "silver" "blue" "plum" "magenta")

dots-permutations "red" "yellow" "blue"

©0e® 000

dots—-permutations "blue" "indigo" "blueviolet"

dots-permutations "salmon" "brown" "olive"

LXYolsIoT.

dots-permutations "black" "blue" "turquoise")

(- Yol -JoX X

Establish a file called permutations.rkt within which to define the functions required for this task. Then proceed
by methodically doing the following sequence of steps:

1.

Please study the “Patchwork House” program, and the way it was developed, in Racket Lesson #1. This
program is intended to serve as a resource for you to consult as you engage in the programming of the “tiles”
decorated with randomly colored stacks of dots that are featured in this task.

Write a program called tile which takes four parameters, each presumed to represent a color, which creates
an image representing a square tile of side 100 with background defined by the first color, on which are con-
centrically piled a disk of diameter 90 of the second color, a disk of diameter 60 of the third color, and a disk
of diameter 30 of the fourth color. If the words are overwhelming, just look at the examples presented in the
accompanying demo.

Write a program called dots-permutations taking three parameters, each presumed to represent a color, which
creates a row of tiles representing the permutations of three colors, where each permutation is rendered as a
stack of dots of diameters 90, 60, and 30. Please look to the accompanying demo for clarification.

Generate a demo that is just like the demo provided, except that the colors in your demo should differ
from those in mine. Arrange for this demo to appear in the proper location of your solution document. For
a list of available colors, look here:

https://docs.racket-lang.org/draw/color-database___.html

Copy /pasted the code for this task to the appropriate locatin of your solution document.

Task 4: Post Your Work

Post your work to your web site by Tuesday, February 21, 2023.

