
 Title: Rust Assignment #1: Memory Management /
 Perspectives on Rust

 Abstract:

 Intro to Rust

 Task 1:

 Memory in a computer is kinda like memory in a human. There is
 long term and short term. In the following two paragraphs I will explain a
 bit about the stack and the heap as they pertain to memory. This is
 important because if you are a programmer, you deal with data, so don’t
 you want to know it’s stored? I know I wouldn’t.

 A stack is where a program stores immediate information, variables
 and such relevant to the here and now of the thread you are executing. The
 stack is temporary. Once you’re done with the program it goes away.
 It’s called a stack because it is LIFO (last in first out) like a physical stack.
 You pop functions onto the stack, starting with the main, followed by other
 functions as they are called by the program, and pop them off in reverse
 order until main is finished. Stack overflow is when the stack runs out of
 space to juggle all the data you want it to store, perhaps because you are
 simulating a circus with 10 very advanced jugglers.

 The heap is where the big boys go to juggle. The stack can just point to
 memory on the heap instead of holding it all myself, kinda how people
 sometimes just point to the number in their bank account instead of
 lugging around gold all the time. The heap’s size is not fixed, and can hold
 big data. This is where you put objects, for example, or an array with
 unspecified sizes (linked listed). If you are a C-chad instead of a Java-cuck
 like me, you get to talk to the heap directly. Yay!

 Task 2:

 The following paragraphs are about explicit memory allocation vs
 garbage collection. This subject is important because it’s about the level of
 control you as a programmer exert over what goes on under the hood.

 Explicit memory (de)allocation in languages like C allows you to
 specify where and how data is stored, down to the level of the bits of the
 value you’re storing and the bits of the address where it is being stored.
 This is what I said about talking to the heap in the previous essay. And of
 course memory allocation is like democracy: when you give the peasants a
 direct say, it’s great until they forget to deallocate memory and the
 computer runs out of space.

 Garbage collection is when the enlightened autocrat computer is in
 charge of recognizing data that is no longer being used and can be deleted.
 If a variable can no longer be accessed by your program, it’s probably time
 to let it go, kinda like that box of childhood toys that your tyrant mother
 donated to the poor kids in Africa. You can see this in languages like Java,
 with which I have a Freudian connection.

 Task 3:

 I n C++, we explicitly allocate memory on the heap with new and
 de-allocate it with delete . In Rust, we do allocate memory and de-allocate
 memory at specific points in our program. Thus it doesn't have garbage
 collection, as Haskell does. But it doesn't work quite the same way as C++.

 In this part, we'll discuss the notion of ownership . This is the main
 concept governing Rust's memory model. Heap memory always has one owner ,
 and once that owner goes out of scope, the memory gets de-allocated.

 Another important thing to understand about primitive types is that we can
 copy them. Since they have a fixed size, and live on the stack, copying should be
 inexpensive. Consider:

 The j variable is a full copy. Changing the value of i doesn't change the
 value of j . Now for the first time, let's talk about a non-primitive type, String .

 At a basic level, some of the same rules apply. If we declare a string within
 a block, we cannot access it after that block ends.

 C++ doesn't automatically de-allocate for us! In this example, we must
 delete myObject at the end of the for loop block. We can't de-allocate it after, so
 it will leak memory!

 Here's an important implication of this. In general, passing variables to
 a function gives up ownership .

 Like in C++, we can pass a variable by reference . We use the ampersand
 operator (&) for this. It allows another function to "borrow" ownership, rather
 than "taking" ownership. When it's done, the original reference will still be valid.

 As a final note, if you want to do a true deep copy of an object, you should
 use the clone function.

 Slices give us an immutable, fixed-size reference to a continuous part of an
 array. Often, we can use the string literal type str as a slice of an object String .
 Slices are either primitive data, stored on the stack, or they refer to another
 object. This means they do not have ownership and thus do not de-allocate
 memory when they go out of scope.

