
Introduction
Belief revision is the process in which a cognitive model compares and adjusts its

knowledge base to new incoming information. In the subject of belief revision, there is no finer
application of this process than a model that can predict guiltiness of a suspect based on
testimonies. This paper will outline the process that we went through to see this model into
reality.

Background
The first step of realizing this model is research. We have found that not a lot of research

has been done on our particular case, that is, a Guilt Machine where everyone is potentially
lying and the killer is among them, and the Machine has to determine from these statements
who is the killer.

We initially attempted to research strategies for the games Clue and Mafia, since we
assumed our Guilt Machine would be similar to either a townsperson in a Mafia game or a
random player in a Clue game. However, we’ve since realized that we’re missing one important
aspect from both these games that prevents these strategies from applying: multiple rounds.
Unlike in the social deduction games, our program only has one ‘round’ of information gathering
from everyone else. This means that we are unable to do any of the cross-round elimination
that’s integral to those strategies.

We then did research into how humans detect if someone is lying. Much of it is based on
body language—for example, according to an article from Time Magazine, people who are lying
tend to blink and fidget less and hesitate longer before speaking—but some of it is based on
personal characteristics. That same article mentioned how the more intelligent and/or creative a
person is, the more likely they are to lie. Conversely, the shorter and less detailed a story is, the
more likely it is to be false (Barker). This means that we could theoretically have our Guilt
Machine take into account the amount of terms in the testimony as an indicator of believability.

The reason for all of these symptoms of lying is because lying takes a larger cognitive
load on someone than telling the truth. Therefore, many strategies involved in determining if
someone is lying involve increasing that mental load, for example by asking them to repeat their
story in reverse or by asking them for more details (Barker).

One article entitled Distributed Belief Revision as Applied Within a Descriptive Model of
Jury Deliberations established many requirements and solutions for a project similar, albeit
much more complex, than ours. The article specifically lays out a general approach to belief
revision, which begins with its first principle; consistency. This means that revision must yield a
consistent knowledge space. The next principle states that when revising, the change to the
knowledge space must alter as little as possible, this means that we cannot remove any more
facts from our knowledge base than what is the absolute minimum. Finally, incoming information
must always belong to the revised knowledge space (Dragoni).

The article also listed requirements for a belief revision framework.. Some of the
requirements this article lists are as follows; the framework must have the ability to reject
incoming information and it must be able to recover previously discarded beliefs. The article
goes on to explain how a system must be able to deal with coupled information rather than just
the information alone, which means the algorithm must consider the source of the information
alongside the information itself. Finally, the article describes how a system must be able to

combine contradictory and concomitant (things that go together) evidence (Dragoni). In the
context of our project, this would just mean that new information must affect the old, as well as
the old information must affect the new.

Another relevant detail that we had to take into account were the circumstances that may
cause somebody to commit murder, which would allow us to build relationships and determine
motives for suspects commiting the crime, as well as motives to frame other suspects. Motives
are typically a key aspect of murder investigations. Most reasonable people don’t commit
murder for no reason. Motives can often be really complex but one article lays it out really well.
In general murders can be broken down into 4 “L”s, love, lust, loathing, and loot (Morrall). We
broke down our possible motives into these categories. Our prolog facts of “married” and “have
relationship” apply to the love and lust category at different levels and possibly loathing as well if
it includes an affair. Our “owes_money” fact can represent loot and our “threatened” fact can
represent loathing.

Our strategy pertaining to motives is to see which relationships would make somebody
more likely to be the killer than somebody else, and which relationships would possibly cause
somebody to fake a testimony to frame another specific suspect. In the end the motive can not
determine guilt, but it can definitely influence the credibility of a suspect and the skepticism that
we should have towards their testimony.

We also took into consideration that perhaps the suspect wasn’t reasonable. In addition
to the 4 “L's someone might kill somebody because they are a psychopath of some sort
(Morrall). In our case we created the fact “arsonist” to represent this.

Methods
In order to successfully implement belief revision, we will need to outline our entire

process, starting with how we will represent beliefs. First, we made the decision to represent all
personal background knowledge as facts. This is to limit the scope of the project and reduce the
overall complexity of the program. We will further limit the scope by only allowing a set number
of weapons, motives, and suspects, and what they witnessed or heard. We will input testimonies
one at a time as a tuple with elements representing what the witness saw, heard, what weapon
they believe was used, who they believe the killer was, the motive, the name of the witness. An
associated truth value will then be added. The only required value for the testimony will be who
the witness believes is the killer.

Next, we must describe the internal reasoning that will be associated with the beliefs. We
have decided to use a system of weights to associate the truth value with the testimony, and in
turn, the confidence we have in who the killer is. Truth values will range from 0.1 to 1.1, with 0
being an internal contradiction, 0.1 being absolutely false, and 1.1 being absolutely true. The
higher the value, the more confident the system will be. We can compare the testimonies to the
information we receive from the bailiff, which we assume to be absolute truth, in order to derive
our truth values. Assuming there is no internal contradiction, we can determine the truth value
by the intersection of the testimony with our beliefs divided by the union of our beliefs plus our
offset of 0.1.This simple system will allow us to get an accurate confidence value and begin to
refine our knowledge base. We also will implement logic where if information contained in a
testimony is accurate, it will both increase the truth value and make it more likely the witness

committed the crime for having knowledge about the crime scene. We will also have to
incorporate motives into the credibility value.

Now we must indicate the conditions for revision. First and most obvious will be revising
our knowledge based on contradictions between testimonies. If more witness’ are saying the
same thing, we can gradually replace old knowledge with more frequent testimonies.

Discussion
We developed 3 scenarios to test how well our computational model worked. Each

scenario includes five separate testimonies that allow our model to revise its beliefs and deduce
who the killer is. For all scenarios, our model successfully predicted who the killer was. The first
scenario implied the killer was John and the bailiff’s evidence said that the cause of death was
poison and the motive was protection. However, we do not know this yet because the bailiff
does not present their evidence until the end of all five testimonies. The first testimony was from
John and he claimed that Craig killed the victim with poison because of adultery. All of John’s
claims appeared to make sense so after John’s statement we believed that Craig was the killer
and he killed the victim with poison. Next Craig testified and claimed that John was the killer
with the exact same weapon of poison. Our beliefs did not change after this testimony, but it
shifted the weight to make John slightly more likely to be the killer than he was before. The next
testimony was given by Matthew. Matthew also claimed that John was the killer but he claimed
that the weapon was rope rather than poison and the motive was protection. After this testimony
our belief changes to thinking that John was the killer and he killed the victim with poison for
protection. As you can see, our belief about the motive and killer changed but more evidence
from the testimonies still suggested poison was the weapon so that did not change. The next
testimony given was by Daniel, and none of the claims in Daniel’s testimony matched any of the
other testimonies at all. Because of this, our belief did not change at all from this testimony, but
the weight for truth value was slightly shifted. The last testimony for this scenario was given by
Theresa where she confirms the cause of death but states a different killer and motive. This
does not change our belief about the killer or motive at all because there is still more support for
the previous testimonies. In the end, our hypothesized killer for scenario one was correct.
Similar results were recorded for the other scenarios and many different variations of them to
test how the system reacted to certain details or uncertainties.

Our model seems to excel at matching testimonies and removing contradictions. Loads
of time was spent to make sure that contradictions within testimonies would render the entire
testimony useless. Also, as we discussed earlier, the model is phenomenal at deducing the
guilty party.

While the model was an overall success, there are a few drawbacks that prevent it from
being perfect in its decision making. The first of these drawbacks is that the order matters when
taking the testimony. This means that the truth values associated with a testimony do not really
matter until all of the testimonies are in. For example, since the model has no other previous
knowledge, when the first testimony is entered, it is assumed to be mostly true as there is
nothing to compare it with. This could easily change if the first testimony differs from the other
four. The truth value or confidence level will decrease with each new and different testimony.
Another drawback is how giving a correct testimony that agrees with the knowledge base

actually increases the likelihood of that particular witness being the killer. We believe that the
current values we have are a bit too strong and this should not matter as much as it does.

A significantly more advanced version of this model could potentially be used in order to
help deduce the likely perpetrator of a crime. However, this has been explored before with
unsatisfactory results. A model such as this will always have some form of bias influencing its
results making it not fair or just to use as a method of determining guilt. A form of this model
could potentially be used to help narrow down the decision making process, but beyond that, it
may not have much practical use. This is supported by the idea that as the scope is broadened,
it only increases the chance that more unintentional biases will sneak into the model.

If we were to continue working with this model or rebuild it from scratch, we would
expand the scope of the project to allow for more dynamic deductions. We are very limited in
that a testimony can only give a handful of specific causes of death, weapons, or killers. Making
a broader knowledge base of facts such as these would be interesting to implement into the
program. A future addition to the model that would be fun to implement would be some form of
natural language processing. This would make things more interesting in that a testimony could
be given in a grammatically correct english sentence or statement. We could then parse out the
whole testimony and revise our beliefs accordingly. Another thing we would have liked to have
to implement would be for the model to take interpersonal relationships between suspects into
account when deducing guilt. Right now, the model only looks at the relationships between the
witnesses and the victim. This is potentially missing a huge piece of the puzzle as the
relationships between the witnesses could provide motive, something our model does take into
consideration.

Conclusion
Our solution did exactly as we planned; successfully modeled collections of information

about a crime scene, and then revised those collections to accurately determine the guilty party.
We determined this proof of concept could be taken farther with an expanded scope, but would
likely yield little practical use due to the unintentional biases that develop in the implementation
of a system such as this.

Bibliography
Lying:

Barker, Eric. “Signs Of Lying: Here’s What Will And Will Not Help You Detect Lies.” Time,

https://time.com/77940/detect-lying/. Accessed 2 Nov. 2021.

Heidenreich, Toni. “The Formal-Logical Characterisation of Lies, Deception, and Associated

Notions.” ResearchGate, King’s College London, Apr. 2013,

https://www.researchgate.net/publication/311969457_The_formal-logical_characterisati

on_of_lies_deception_and_associated_notions.

https://www.researchgate.net/publication/311969457_The_formal-logical_characterisation_of_lies_deception_and_associated_notions
https://www.researchgate.net/publication/311969457_The_formal-logical_characterisation_of_lies_deception_and_associated_notions

Florentine, Erica. “11 Ways To Tell If Someone Is Telling You The Truth, According To

Science.” Bustle, 9 June 2016,

https://www.bustle.com/articles/165346-11-ways-to-tell-if-someone-is-telling-you-the-tru

th-according-to-science.

Murder Motives:
Morrall, Peter. “Murder and Society: Why Commit Murder?” Centre for Crime and Justice

Studies, Centre for Crime and Justice Studies, Winter 2006,

https://www.crimeandjustice.org.uk/sites/crimeandjustice.org.uk/files/09627250608553

401.pdf.

Belief revision:
Dragoni, Aldo, et al. Belief Revision as Applied Within a Descriptive Model of Jury

Deliberations. ResearchGate, May 2000,

https://www.researchgate.net/publication/2599219_Distributed_Belief_Revision_as_Ap

plied_Within_a_Descriptive_Model_of_Jury_Deliberations.

Appendix A: Code
%Visual:
%Blue face :- [rope, poison]
%Flames :- [matches]
%Convulsing :- [poison]
%Blood :- [gun, knife]
%Nothing :- [gun, knife, rope, poison, none]

%Audial:
%Gunshot :- [gun]
%Screaming :- [gun, knife, matches]
%Coughing :- [poison, matches]
%Banging :- [gun, knife, rope]
%Nothing :- [knife, rope, poison, matches, none]

% Weapons: [gun, knife, rope, poison, matches, none]
% Suspects: [john, craig, theresa, matthew, daniel, victim]

% All Weapons and their correlated symptoms

weapon(gun, Saw, Heard) :- member(Saw, [blood, nothing]),
member(Heard, [gunshot, screaming, banging]).
weapon(knife, Saw, Heard) :- member(Saw, [blood, nothing]),
member(Heard, [screaming, banging, nothing]).
weapon(rope, Saw, Heard) :- member(Saw, [blue_face, nothing]),
member(Heard, [banging, nothing]).
weapon(poison, Saw, Heard) :- member(Saw, [blue_face, convulsing, nothing]),
member(Heard, [coughing, nothing]).
weapon(matches, Saw, Heard) :- member(Saw, [flames]),

member(Heard, [screaming, coughing, nothing]).
weapon(none, Saw, Heard) :- member(Saw, [nothing]),
member(Heard, [nothing]).

% Relationship Info
married(craig, victim).
married(matthew, daniel).
have_relationship(theresa, victim).
have_relationship(craig, theresa).
have_relationship(john, victim).
have_relationship(daniel, victim).

% S has an affair on R with P if S is married to R, and S is in a relationship with P
affair(S, R, P) :- have_relationship(S, P), married(S, R), \+(R = P).

% owes_money(S, P) = S owes P money
% S = P implies S is in debt/owes money to the bank
owes_money(matthew, victim).
owes_money(victim, john).
owes_money(victim, victim).
owes_money(daniel, victim).
owes_money(john, john).

% arsonist(S) = S is an arsonist
arsonist(daniel).
arsonist(craig).
arsonist(victim).

% threatened(S, P) = S has threatened P
threatened(theresa, victim).
threatened(victim, craig).
threatened(craig, victim).
threatened(daniel, john).
threatened(victim, john).

motive(adultery, Suspect) :- affair(Suspect, victim, _); affair(victim, Suspect,
_).%married(Suspect, victim), (have_relationship(Suspect, !victim) | had_relationship(!Suspect,
victim)
motive(money, Suspect) :- owes_money(Suspect, victim); owes_money(victim, Suspect).
motive(pyromania, Suspect) :- arsonist(Suspect). %added this so insanity is really a catch-all
motive(protection, Suspect) :- threatened(Suspect, victim); threatened(victim, Suspect).
motive(suicide, victim) :- owes_money(victim, victim); affair(_, victim, _). % figure this out later
motive(insanity, _).

read_word_list(Ws) :-
read_line_to_codes(user_input, Cs),
atom_codes(A, Cs),
tokenize_atom(A, Ws).

% Grammar for input
%Saw, Heard, Weapon, Killer, Motive, Owner
%the odd names is to avoid posible overlap with rules in the future
sentence(s(Testimony)) --> open_parens, testi(Testimony), close_parens.
sentence(s(Bailif)) --> open_parens, bail(Bailif), close_parens.
sentence(s(Testimony)) --> open_parens, testi(Testimony), close_parens, dot.
sentence(s(Bailif)) --> open_parens, bail(Bailif), close_parens, dot.

testi(t(Saw, Heard, Weapon, Killer, Motive, Witness)) --> eyes(Saw), comma, ears(Heard),
comma, weap(Weapon),

comma, kill(Killer), comma, moti(Motive), comma, wit(Witness).

bail(b(Weapon, Motive)) --> weap(Weapon), comma, moti(Motive).

eyes(v(blue_face)) --> [blue,face]. %this is how prolog will match to 'blue face' (w/o the ' marks)
eyes(v(flames)) --> [flames].
eyes(v(convulsing)) --> [convulsing].
eyes(v(blood)) --> [blood].
eyes(v(nothing)) --> [nothing].
eyes(v(nothing)) --> [n, (/), a]. %this looks odd but this is how prolog will match to 'n/a' (w/o the '
marks)

ears(a(gunshot)) --> [gunshot].
ears(a(screaming)) --> [screaming].
ears(a(coughing)) --> [coughing].
ears(a(banging)) --> [banging].
ears(a(nothing)) --> [nothing].
ears(a(nothing)) --> [n, (/), a].

weap(w(gun)) --> [gun].
weap(w(knife)) --> [knife].
weap(w(rope)) --> [rope].
weap(w(poison)) --> [poison].
weap(w(matches)) --> [matches].
weap(w(none)) --> [none].
weap(w(none)) --> [n, (/), a].

kill(k(john)) --> [john].
kill(k(craig)) --> [craig].
kill(k(theresa)) --> [theresa].
kill(k(matthew)) --> [matthew].
kill(k(daniel)) --> [daniel].
kill(k(victim)) --> [victim].

moti(m(adultery)) --> [adultery].
moti(m(money)) --> [money].
moti(m(protection)) --> [protection].
moti(m(pyromania)) --> [pyromania].
moti(m(suicide)) --> [suicide].
moti(m(insanity)) --> [insanity].
moti(m(insanity)) --> [n, (/), a].

wit(o(john)) --> [john].
wit(o(craig)) --> [craig].
wit(o(theresa)) --> [theresa].
wit(o(matthew)) --> [matthew].
wit(o(daniel)) --> [daniel].

open_parens --> ['('].
close_parens --> [')'].
dot --> ['.'].
comma --> [','].

output([Killer, Weapon, Motive]) :- write("I currently believe that "), write(Killer),
write(" killed the victim with "), write_weapon(Weapon), write(" and that the motive was

"),
write(Motive), write("."), nl.

%I went over the top formatting this for fun
write_weapon(gun) :- write(a), write(" "), write(gun).
write_weapon(knife) :- write(a), write(" "), write(knife).
write_weapon(rope) :- write(rope).
write_weapon(matches) :- write(matches).

write_weapon(poison) :- write(poison).
write_weapon(none) :- write("... actually, I "), write(don), write("'"), write(t),

write(" "), write(know), write(" what the murder weapon is").

start :- take_input([], [], 0).

take_input(Beliefs, Testimonies, 5) :- final_remarks(Beliefs, Testimonies), !.%final_remarks(),
output, !. (basically)
take_input(Beliefs, Testimonies, Count) :-

Count < 5,
read_word_list(Input),
sentence(Parse, Input, []),
process_testimony(Beliefs, Testimonies, Parse, NewTestimonies),
revise_beliefs(Beliefs, NewTestimonies, NewBeliefs),
recalculate_truth_values(NewTestimonies, NewBeliefs, FinalTestimonies),
output(NewBeliefs),
Count1 is Count +1,
take_input(NewBeliefs, FinalTestimonies, Count1).

% Rough idea of how input processing can go
process_testimony(Beliefs, Testimonies, Parse, NewTestimonies) :-

extract(Parse, Statement),
Statement = (Saw, Heard, Weapon, Killer, Motive, Witness),
((internal_contradiction(Statement, Testimonies),

append(Testimonies, [(0, Saw, Heard, Weapon, Killer, Motive, Witness)],
NewTestimonies));

(get_truth_value(Statement, Beliefs, TruthValue),
append(Testimonies, [(TruthValue, Saw, Heard, Weapon, Killer, Motive, Witness)],

NewTestimonies))).

extract(s(t(v(Saw), a(Heard), w(Weapon), k(Killer), m(Motive), o(Witness))),
(Saw, Heard, Weapon, Killer, Motive, Witness)).

extract(s(b(w(Weapon), m(Motive))), Weapon, Motive).

final_remarks([Killer, _, _], Testimonies) :-
read_word_list(Input),
sentence(Parse, Input, []),
extract(Parse, Weapon, Motive),
TempBeliefs = [Killer, Weapon, Motive],
recalculate_truth_values(Testimonies, TempBeliefs, FinalTestimonies),
%this is being weird and not grabbing everything, even though it grabs everything in

revise_beliefs
findall((TruthValue, TKiller, Witness),

(member((TruthValue, _, _, _, TKiller, _, Witness), FinalTestimonies)),KL),
revise_killer(KL, FinalKiller),
motive(Motive, FinalKiller),
FinalBeliefs = [FinalKiller, Weapon, Motive],
write("My final beliefs are as follows:"), nl,
output(FinalBeliefs).

% There's an internal contradiction if...
internal_contradiction((Saw, Heard, Weapon, Killer, Motive, Witness), Testimonies) :-

(\+ weapon(Weapon, Saw, Heard), !); % the weapon doesn't line up...
(\+ motive(Motive, Killer), !); % or the motive doesn't line up...
(member((_, _, _, _, _, _, Witness), Testimonies), !). % or they've already given

testimony.

get_truth_value((_, _, Weapon, Killer, Motive, _), Beliefs, TruthValue) :-
intersection([Killer, Weapon, Motive], Beliefs, Intersection),
union([Killer, Weapon, Motive], Beliefs, Union),
length(Intersection, ILength),
length(Union, ULength),
TruthValue is (ILength/ULength)+0.1.

recalculate_truth_values([], _, NewTestimonies) :- NewTestimonies = [].
recalculate_truth_values([H|T], Beliefs, NewTestimonies) :-

H = (OldTruthValue, Saw, Heard, Weapon, Killer, Motive, Witness),
OldTruthValue \= 0,
get_truth_value((Saw, Heard, Weapon, Killer, Motive, Witness), Beliefs, TruthValue),
recalculate_truth_values(T, Beliefs, RestOfList),
NewTestimonies = [(TruthValue, Saw, Heard, Weapon, Killer, Motive,

Witness)|RestOfList].
recalculate_truth_values([H|T], Beliefs, NewTestimonies) :-

H = (0, _, _, _, _, _, _),
recalculate_truth_values(T, Beliefs, RestOfList),
NewTestimonies = [H|RestOfList].

revise_beliefs([], [(_, _, _, Weapon, Killer, Motive, _)], [Killer, Weapon, Motive]).

% revise the program's beliefs
revise_beliefs([_, _, _], Testimonies, [NewKiller, NewWeapon, NewMotive]) :-

%get_killers_and_truth(KL, Testimonies),
findall((TruthValue, Killer, Witness),
(member((TruthValue, _, _, _, Killer, _, Witness), Testimonies)),KL),

findall((TruthValue, Weapon),
(member((TruthValue, _, _, Weapon, _, _, _), Testimonies), TruthValue \= 0), WL),

findall((TruthValue, Motive),
(member((TruthValue, _, _, _, _, Motive, _), Testimonies), TruthValue \= 0), ML),
sort(KL, KillerList),
sort(WL, WeaponList),
sort(ML, MotiveList),
revise_killer(KillerList, NewKiller),
revise_weapon(WeaponList, NewWeapon),
revise_motive(MotiveList, NewMotive),
motive(NewMotive, NewKiller).

revise_killer(List, NewKiller) :-
Killers = [(L1, john), (L2, craig), (L3, theresa), (L4, matthew), (L5, daniel), (L6, victim)],
findall((Value1, john, Witness), member((Value1, john, Witness), List),

JAccuse),
findall((Value2, craig, Witness2), member((Value2, craig, Witness2), List),

CAccuse),
findall((Value3, theresa, Witness3), member((Value3, theresa, Witness3), List),

TAccuse),
findall((Value4, matthew, Witness4), member((Value4, matthew, Witness4),List),

MAccuse),
findall((Value5, daniel, Witness5), member((Value5, daniel, Witness5), List),

DAccuse),
findall((Value6, victim, Witness6), member((Value6, victim, Witness6), List),

VAccuse),
sum(JAccuse, 0, S1),
sum(CAccuse, 0, S2),
sum(TAccuse, 0, S3),
sum(MAccuse, 0, S4),
sum(DAccuse, 0, S5),
sum(VAccuse, 0, L6),
modify_sum(S1, S2, S3, S4, S5, L1, L2, L3, L4, L5, List),
sort(Killers, Sorted),
reverse(Sorted, KL),
get_killer(KL, NewKiller).

get_killer([(_, NewKiller)|_], NewKiller).
get_killer([_| R], NewKiller) :- get_killer(R, NewKiller).
get_killer([], _) :- false.

revise_motive(List, NewMotive) :-
Motives = [(S1, adultery), (S2, money), (S3, pyromania), (S4, protection), (S5, suicide),

(S6, insanity)],
findall((Value1, adultery), member((Value1, adultery), List), JAccuse),

findall((Value2, money), member((Value2, money), List), CAccuse),
findall((Value3, pyromania), member((Value3, pyromania), List), TAccuse),
findall((Value4, protection), member((Value4, protection), List), MAccuse),
findall((Value5, suicide), member((Value5, suicide), List), DAccuse),
findall((Value6, insanity), member((Value6, insanity), List), VAccuse),
sum(JAccuse, 0, S1),
sum(CAccuse, 0, S2),
sum(TAccuse, 0, S3),
sum(MAccuse, 0, S4),
sum(DAccuse, 0, S5),
sum(VAccuse, 0, S6),
sort(Motives, Sorted),
reverse(Sorted, [(_, NewMotive)|_]).

revise_weapon(List, NewWeapon) :-
Weapons = [(S1, gun), (S2, knife), (S3, rope), (S4, poison), (S5, matches), (S6, none)],
findall((Value1, gun), member((Value1, gun), List), JAccuse),
findall((Value2, knife), member((Value2, knife), List), CAccuse),
findall((Value3, rope), member((Value3, rope), List), TAccuse),
findall((Value4, poison), member((Value4, poison), List), MAccuse),
findall((Value5, matches), member((Value5, matches), List), DAccuse),
findall((Value6, none), member((Value6, none), List), VAccuse),
sum(JAccuse, 0, S1),
sum(CAccuse, 0, S2),
sum(TAccuse, 0, S3),
sum(MAccuse, 0, S4),
sum(DAccuse, 0, S5),
sum(VAccuse, 0, S6),
sort(Weapons, Sorted),
reverse(Sorted, [(_, NewWeapon)|_]).

%basecase
sum([], Sum, Sum).
%sum for a 3-tuple
sum([(0,_,_)|Rest], CurSum, FinalSum) :-

sum(Rest, CurSum, FinalSum).
sum([(Val,_,_)|Rest], CurSum, FinalSum) :-

NewSum is CurSum + Val+1,
sum(Rest, NewSum, FinalSum).

%sum for a 2-tuple
sum([(0,_)|Rest], CurSum, FinalSum) :-

sum(Rest, CurSum, FinalSum).
sum([(Val,_)|Rest], CurSum, FinalSum) :-

NewSum is CurSum + Val+1,

sum(Rest, NewSum, FinalSum).

% modify the sum of the each suspect's odds by 1.1 - their truth value
modify_sum(SJ, SC, ST, SM, SD, LJ, LC, LT, LM, LD, List) :-

((member((JTV, _, john), List), LJ is SJ + JTV); LJ = SJ),
((member((CTV, _, craig), List), LC is SC + CTV); LC = SC),
((member((TTV, _, theresa), List), LT is ST + TTV); LT = ST),
((member((MTV, _, matthew), List), LM is SM + MTV); LM = SM),
((member((DTV, _, daniel), List), LD is SD + DTV); LD = SD).

Appendix B: Scenarios

Scenario 1.
(blue face, nothing, poison, craig, adultery, john)
(convulsing, nothing, poison, john, protection, craig)
(nothing, banging, rope, john, protection, matthew)
(flames, screaming, matches, matthew, pyromania, daniel)
(nothing, nothing, poison, daniel, money, theresa)

Bailiff
(poison, protection)
Expected killer: john

Scenario 2:
(flames, nothing, matches, victim, pyromania, john)
(flames, screaming, matches, craig, pyromania, theresa)
(flames, nothing, matches, craig, pyromania, daniel)
(nothing, gunshot, poison, theresa, adultery, craig)
(flames, coughing, matches, victim, suicide, matthew)

Bailiff
(matches, suicide)
Expected killer: victim

