1. State the resolution principle.

- For any two clauses C1 and C2, if there is a literal L1 in C1 and a complementary literal L2 in C2, then delete L1 and L2 from C1 and C2, respectively and construct the disjunction of the remaining clauses.

2. Define what is meant by resolution deduction.

- Given a set S of clauses, a resolution deduction of C from S is a finite sequence C1, C2, ..., CK clauses such that each Ci is either a clause in S of the resolvent of previous clauses in the sequence, and C = Cx.

3.Show by means of resolution, line by line, that the formula U is a logical consequence of the three formulas ($P \rightarrow S$) and ($S \rightarrow U$) and P. (Please don't forget that you must first convert to clausal form).

```
a) Convert to clause form
     1. ~ P v S
     2. ~ S v U
     3. P
b) Add the negation of the goal
     S augmented = { ( \sim P \vee S ), ( \sim S \vee U ), P, \sim U }
c) Refute
     1) ~ P v S
                                [in S]
     2) ~ S v U
                                [in S]
     3) P
                                [in S]
     4) ~U
                                [negation of goal]
     5) ~P v U
                                [resolution of i. & ii.]
     6) U
                                [resolution of iii. & v.]
     7)
                                [resolution of iv. & vi.]
```

4. Draw the resolution tree corresponding to the resolution deduction that you performed in the previous problem.

5. Show by means of the inconsistency truth table approach that the formula U is a logical consequence of the three formulas ($P \rightarrow S$) and ($S \rightarrow U$) and P.

Р	S	U	$P{\rightarrow} S \land S \rightarrow U \land P \rightarrow U$
Т	Т	Т	Т
Т	Т	F	Т
Т	F	Т	Т
Т	F	F	Т
F	Т	Т	Т
F	Т	F	Т
F	F	Т	Т
F	F	F	Т

6. Define Horn Clause.

- A Horn clause is a disjunction of literals.

7. Can the formula (P ^ Q ^ R) \rightarrow S be converted to a Horn Clause?

- Yes, by the switcheroo principle.

8. Write down a clause which is not a Horn clause. - (P \rightarrow Q) ^ R

9. Write down a Horn clause involving P, Q, R, S, and T. - $(P \land O \land R) \lor (S \land T)$

10.Argue that the following Prolog statement is a Horn clause: a :- b, c, d.

- The Prolog statement contains commas, which are equivalent to the logical conjunctions(and symbol), and `:-' which is equivalent to a logical implication. The symbols can be combined and rearranged into a logical string of disjunctives, and can therefore be deemed a Horn clause.

11. TRUE or FALSE: Prolog is essentially a Horn clause problem solver.

- TRUE

12. TRUE or FALSE: Prolog performs a computation by (1) converting its rule to Horn clauses, (2) negating a given goal, and (3) endeavoring to derive the empty clause by means of resolution. If variables are involved, they must be instantiated in order to obtain complementary literals.

- TRUE

```
13. Consider the following Prolog program:
    p :- q, t.
    p :- r, s.
    q :- r.
    r.
    t.
    s.
a) Convert to Horn clause form (Simply write down each statement
as a Horn clause).
    ~Q v ~T v P
    ~R v ~S v P
    ~R v ~S v P
    ~R v ~Q
    R
    T
    S
```

b) Draw a resolution deduction tree which derives the empty clause.

c) Draw a different resolution deduction tree which derives the empty clause.

```
14. Consider the following Prolog program:
% Animal KB
% Think of these rules as what is known about animals.
id(polarbear) :- description(large,white).
id(dove) :- description(small, white).
id(cow) :- description(large, brown).
id(chipmunk) :- description(small, brown).
id(cardinal) :- description(small, red).
description (Size, Color) :- size(Size),color(Color).
% Think of these facts as what we were in the wild.
size (small).
color(brown).
```

```
Draw a resolution deduction tree, instantiating variables as
needed, to respond to the
Prolog query: id(X) (Don't forget that the idea is to negate the
query, add it to the set of
clauses (the Prolog program in clausal form), and refuse
(instantiating variables
appropriately)!).
```

